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ABSTRACT  

Information accessibility continues to expand as technology becomes ubiquitous across platforms within arm’s reach. 
A particular area in which this accessibility has been seen is the availability and prevalence of bioinformatics. Personal 
electronic devices and wearables are shifting the way people view, understand, and utilize technology to receive 
feedback about themselves. The development of smart technology and nanotechnology has improved the ability for 
tools to be ergonomically designed and, perhaps more importantly, be cost-effective to consumers. Drivers exist for 
data-driven and personalized learning, but a road map is often not given. The aim of this paper is to provide a broader 
understanding of how these tools may be utilized in enhancing the cognitive processes and shaping the modernization 
of personalized learning. Included in the discussion will be a review of current and emerging technologies, tools, and 
software to gain insight into their capabilities and leverage points for learning. The paper will discuss trends in the 
cognitive sciences to demonstrate how findings like 4E Cognition may help improve the understanding of benefits 
gained from these tools’ feedback. Feedback is embedded in the military training and education process and enhanced 
by existing M&S tools. The appropriate synthesis and application of these scientific findings and innovative tools can 
make the information received more impactful by providing a path forward on its utilization. Finally, this paper intends 
to demonstrate a framework for learners and facilitators of learning to integrate these tools and science to develop 
more efficient, effective learning.  
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INTRODUCTION  

With each passing year, the development of technology has continued to progress by leaps and bounds at a seemingly 
record-breaking pace. One highlight of this progression is increased ease of access to technology devices that provide 
physiological feedback to users. What began as very basic data in the early stages of wearable technology has 
integrated data into applications, websites, and personalized intelligence. Essentially, this development has resulted 
in the transition of laboratory-only wearables to omnipresent, inexpensive, commercially available products that are 
widely used across the public sector. The next phase of this progression is to make meaning from their information. 
Initially, there will be questions about the accuracy of such information and about how it is presented to the user. Is it 
delivered in a digestible message that they can understand and ultimately act on? Just as a concerto composed and 
played without error to the untrained ear is just a song, the raw, unfiltered, unprocessed information are just numbers 
on a page. Thus, this paper has in view to discuss the types of information made available with these technologies, 
understand what they aim to provide to the users, and more importantly, bring focus to how facilitators of training and 
education, as well as learners themselves, can make deliberate and useful meaning from the information that is being 
provided. 

History of Biosensing  

A biosensor is a device that takes a biological response and turns it into a digital signal (data) (Mehrotra, 2016). The 
onset of biosensors can trace its roots back to the early 1960s with Leland Clark, the scientist who designed the first 
oxygen detector (Mohanty & Dougianos, 2006). Since then, significant advancements have occurred with more parts 
of the body being analyzed, and while technology with biosensing capabilities, often referred to as wearables, are not 
new, the fidelity of their data has varied over time. The most common wearable, the watch, demonstrates the 
progression of the data available to the user. At first, these were common, but the intelligent version of wearables has 
only become prevalent in recent years. To be utilized more often and easily, the objects needed to be, as they state, 
wearable, as well as convenient, compact, and readily incorporable with other devices. Early on, the terminology of 
“smart” meant that it did more than tell time in the case of watches. With the availability to connect via Bluetooth or 
other connection and ability to connect to the internet of things (IOT), these technologies increased their functionality, 
the parts of the body on which they could be worn, and the variability in the metrics returned (Xue, 2019). Growth of 
these devices has predominantly focused on two categories: wearability and connectivity (or ability to be a smart 
device).   

Over the past decade, the accuracy and volume of data has substantially increased, and when combined with the 
heightened accessibility to multiple wearables, a data rich environment for the savvy user has been created.  
Accordingly, developers are becoming increasingly focused on finding a means to the raw data from the body and 
providing it to the user by creating a connection through an application or interface take for the user to understand the 
information provided (Hassib et al., 2016). For the purposes of this paper, the authors propose biosensing as any tool 
that provides physiological, emotional, medical, or mental data.   

Data in Learning Settings 

To date, education has largely followed an industrial model that treats learners as widgets moving through a factory, 
receiving a series of add-ons as they progress through the metaphorical factory line. At the end, each widget is certified 
as able to perform the same tasks as all the other widgets. For the military, this has been a necessity, for large volumes 
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of personnel were needed to fill all the positions for national defense. As can be seen in the three-year typical rotation 
cycle, the ability to fill any position with nearly any qualified human was crucial. But as the war of cognition evolves 
and becomes prominent, it will be the minds and decisions of our service members that need to be optimized and 
specialized.  

This evolution has urged the research community to determine how to enhance cognitive capabilities, increase decision 
making agility, and create self-regulated learners. It is no longer enough to provide one-size fits-all curricula; there is 
too much to learn, and the sophistication of the material is increasing beyond levels that every person can comprehend. 
Rather, it is important to adjust teaching materials and pathways to the leaner’s unique needs in order to clarify and 
optimize their specialized skills and raise all other capabilities at a rate faster than that in a generalized setting. To 
accomplish these goals, decisions for training must be data-driven, and the data needs to be of the highest quality, be 
provided in real-time, be analyzed just as quickly across multiple experiences, and be compared to multiple learners. 
More precisely, data-driven, personalized learning interventions based on neurological data are expected to improve 
learning outcomes by 44% (Chae, 2020).   

Using data allows for a deeper understanding of the learner and what they need, which in turn leads to an increase in 
the precision of intervention application. The guesswork required by humans to interpret behavior as representative 
of emotions, cognitive readiness, and ability is removed. Personalization of the material, pathway, and timing of 
application allows all interventions to be purposeful and targeted. It reduces redundancy of material that is already 
mastered, substantially reducing negative training by adjusting instruction or experiences in real time. Wearables have 
been the necessary, albeit elusive, key to these types of training structures. The early prototypes included too much 
noise in the data to be useful, and the apparatus was too cumbersome for operational use. Now that these products are 
largely commercially available, inexpensive, and non-invasive, their ability to provide the needed data has accelerated. 
With this data, so many decisions can be made and modernized learning structures can be created, but more is still 
needed: we need a data highway to manage all this information; we need analysis capabilities that allow us to make 
sense of the information; and we need to know what to buy and how to best apply it to drive training. Thus, the primary 
research areas are beginning to look less at the development of neuro-assessment apparatus and more at what they can 
afford the learner, instructor/facilitator, and military training enterprise. Central areas of focus currently include the 
ability to control actions with the mind alone and the ability to provide trainees, or even in operations, technology 
elements that will offload data and analytical cognitive activities in favor of managing the human’s cognitive load 
during learning or stress or on the battlefield (Walcutt et al., 2022).   

FEEDBACK  

Biofeedback  

There are various basic types of biofeedback that supply information about the body’s functioning. Some examples 
include electromyography (EMG), photoplethysmography (PPG), thermal or temperature, electrocardiograph (ECG),  
electrodermography (EDG), and electroencephalography (EEG). While there may be others, these are the most 
common methods of biofeedback used in the systems discussed in this paper. The most understood of these are EEG 
(which uses sensors on an individual’s head to capture brain waves) and ECG (which measures heart rate and heart 
rate variance through sensors). Wearables have also taken advantage of items such as EDG (measures the activity of 
sweat glands) and photoplethysmography (uses light sensors to measure blood volume changes) by incorporating them 
into their devices to give the user additional data.   

Bioinformatics  

Bioinformatics aligns itself with biology and computer science. More on the computational side – conducting analyses 
at the molecular level – it centers on the acquisition, storage, analysis, and dissemination of biological data in DNA 
and amino acid sequences (Bioinformatics, 2016). This type of biosensing and analyses will not be discussed in large 
part in this paper but is worth defining to disambiguate from the others.  

Biohacking  

Biohacking is when humans use technology to enhance their performance, health, well-being, or even their interactions 
with technology. While early examples, like smart fasting or meditation, could be viewed as interventions aimed at 
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improving body health and performance, recent research has shown that individuals are now turning to technological 
augmentation to improve themselves. Typically, these are embedded technologies in the form of electronic tattoos 
(biostamps), memory chips, magnetic implants, or even guidance systems (Gangadharbatla, 2020). The similarities 
between wearables and biohacking align with the real-time capture of personal data. But the differences grow from 
there, as biohacking often has more risk associated with its adoption and requires the user to be more knowledgeable 
about the technology in order to create the connections for use (Gangadharbatla, 2020). 

Neurochemical Measurement  

While it is not new to focus on the neurobiological processes that are involved in learning, applying knowledge of 
how these basic elements in the body affect efficiency and effectiveness in real-world training contexts is just 
emerging. Dating back to the late 1990s, research that combines education and training practices with real-time 
neurophysiological measurements has been funded by the US military (Walcutt et al., 2020). In its infancy of 
application, the focus was almost entirely on how to accurately measure what was happening in the brain during 
learning experiences in simulated environments. These early prototypes were messy (they required gel to be applied 
to the scalp for the electrodes to read accurately), cumbersome (upwards of 180 electrodes were needed to capture 
data), and noisy (sensors gathered accidental data from the environment and subject movement that reduced accuracy). 
Based on these issues, work in this area of research largely ceased from prominence until recently (Walcutt et al., 
2020), as newly developed apparatus addresses these issues and provides robust data that can deepen our 
understanding of the unique learning experiences of each trainee and possibly help personalize their experience for 
optimization. 

To that end, ten neurochemicals are of particular interest to the learning community. These include excitatory 
chemicals (endorphins, glutamate, noradrenaline, adrenaline, and dopamine), regulatory (serotonin, oxytocin, and 
GABA), cognitive (acetylcholine), and stress (cortisol; see fig. 1). Combined, they have notable impacts on the 
emotional state of learners, their awareness of material and other elements, and arousal, which allows them to attend 
and digest the information being provided. More specifically, serotonin regulates mood and sleep cycles (Jenkins et 
al., 2016), norepinephrine supports attention (Beane & Marrocco, 2004), oxytocin allows students to feel relaxed 
during learning (Borden, 2020), and dopamine promotes confidence (Badri et al., 2018), while endorphins are the fuel 
for thinking and understanding material (Koestler, 1981). Finally, glutamate and cortisol are regulatory chemicals that 
manage boredom and anxiety (Seli et al., 2019). Once these are understood and measurable, it is easy to imagine an 
optimized formula that defines “learning readiness” and a set of target chemical levels to achieve across each quadrant. 
Accordingly, direct feedback to the learner, instructor, or simulation can drive decisions or interventions to help create 
an optimal internal chemistry environment, like a common goal to design a classroom, or an optimal external learning 
environment. 

 
Fig. 1. Neurochemicals involved in learning. 

 



 
 
 

MODSIM World 2022 

2022 Paper No. 53 Page 5 of 9 

4E COGNITION 

To connect the data provided by biosensors of varying types to the learning process, it is necessary to consider the 
research in cognition and theories that can best guide actionable interventions. Specifically, advances in the cognitive 
sciences have led to a framework, known as 4E cognition (4EC), that represents four areas of cognition as one: 
embedded, embodied, enactive, and extended. Ecological cognition should be viewed as an add-on to this model as 
well. 4E cognition is a means to holistically understand how the brain and body interact with the environment for 
learning and work to enhance the learning experience (Walcutt et al., 2022). Collectively, these areas of cognition 
function as an ecosystem impacting one another in the cognitive process (Newen et al., 2018). 

Embodied cognition involves knowledge of the body’s involvement with and understanding of the environment 
around it, specifically with how the distribution of information is concerned (Wilson & Foglia, 2011). This distribution 
of information is across the brain, body, and environment and is supported by the interaction of the three to receive, 
infer, and digest information. Embedded cognition refers to information that is either received from and affected by 
the changes in the environment or made more tangible by environmental cues, which affect human understanding 
(Dawson, 2014). Enactive is driven by the combination of activity and cognition, merging the internal processing with 
the interaction of the environment surrounding a person (Gallagher & Lindgren, 2015). One can liken this to a baseball 
outfielder who has to track the ball off the bat and move their body in time and space, all while making the calculations 
to arrive at the ball before catching it in the glove. Lastly, extended cognition extends the mind out into the 
environment (Aizawa, 2014). This is the most understood portion of 4EC, as the cognitive processes are offloaded 
onto environmental supports like a piece of paper or whiteboard, connecting one’s ideas in palpable ways (Clark & 
Chalmers, 1998). 

Holistic Change to Person 

Keeping 4EC in mind, one can begin to make the connections with wearables, cognition, and then to learning. The 
more enriched the data available to learners, the more it can, first, help them understand themselves better and, second, 
understand perhaps when they are best prepared to learn and further utilize the information to convert it into holistic 
improvements for themselves.   

Take, for instance, the example of jewelry wearables like the Oura ring, which combines the use of PPG, EDG, 
temperature, and an accelerometer to track various user activities and provide a metric for understanding quality of 
sleep, activity, and overall readiness. It does this by producing a quantitative sleep score comprising several factors: 
various levels of sleep, including REM sleep and deep sleep patterns; activity from comparisons of physical activity 
patterns; readiness, which incorporates resting heart rate, heart rate variability, temperature, prior sleep, and activity 
(Carper et al., 2020). These are presented via the interconnectedness of an application viewed on a personal electronic 
device. The question, in addition to opportunity, is whether the user can understand the information given to them.   

Items such as the Fitbit and Apple Watch have been around for quite some time, giving users tracking of their physical 
activity and, with recent updates, even their sleep patterns. But what does it mean to consider an overall readiness 
score? The DoD measures readiness from a unit’s ability to fight and meet the demands of their assigned mission 
(DoD, 2017), but its domain is at the higher level. Wearables like the Oura ring then have the potential to have 
discussions at the individual level and, if consolidated, a combined level. The individual may now consider the holistic 
effects of physiological factors like sleep, physical activity, and rest periods to determine their potential for 
performance. This awareness can habituate users to their normal patterns in life and alert them to changes, as well 
when those changes may be harmful or indicative of something else. The US National Basketball Association (NBA) 
even saw these used in the early onset of COVID-19 in 2020 as a potential early predictor of contraction of the virus 
by alerting users to changes in sleep patterns or body temperature change (Pickman, 2020). Evidently, the opportunity 
exists for users to understand far more about themselves as a system than ever before.   

What it Means for Learning  

Human performance is not restricted to physical performance, and if the information is properly gathered, analyzed, 
and implemented toward change, it can see an increasing influence on learning. Given the NBA’s and other sports 
teams’ uses of devices that inform users of the impacts their life patterns have on future performance, consider how 
this would affect learning.   
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It is not uncommon for a student to claim that they just had a bad test day, or that they “weren’t up for the task” on 
that given day. If they had a device to notify them of their patterns, perhaps they would have known that they would 
not be ready to perform that day. If learners, like athletes, were able to determine when to perform based on readiness 
scores, could the indices of their learning improve? Would they be able to identify patterns in or trends for various 
types of performance that can help educate them on subtle changes to improve their performance? 

Another example of technology that may improve the understanding of these cognitive patterns is the EEG.  
Traditionally speaking, these have been bulky items that were not conducive to tracking users during movement or 
outside of a laboratory setting. However, recent improvements have allowed for sensor improvement and even creation 
of a lighter headset. The EEG is growing in research for its direct measurement capabilities and, with these 
advancements, uses of as few as 8 nodes (Walcutt et al., 2020). These measurements can be meaningful to demonstrate 
brain activity and items such as alertness, frustration, attention, and cognitive load (Vogel-Walcutt, 2019). Systems 
that provide these measurements, like the QNeuro headset, can apply these patterns to optimizing users’ learning 
efficiency and knowledge retention by staying in the heightened state of alertness or optimal position for the cognitive 
load. 

NEUROSCIENCE  

Understanding the science behind the data is key. We have described the basics of the neurochemicals and their impact 
on the body during learning, but it is the organization of these and management of their levels that will have a 
significant impact on learning readiness, engagement, and ultimately the ability to apply what is learned in context.  
Thus, the goal is to create a safe-feeling learning environment that will allow the mind to be focused entirely on the 
material at hand rather than loaded with concerns about other facts, such as the rank of other trainees, complexity of 
the material, or fear of failure. Ensuring that oxytocin, serotonin, and GABA are high is important, while managing 
cortisol release is mandatory (Walcutt et al., 2022).). Being alert and engaged requires endorphins, adrenaline, and 
dopamine, but the levels of these chemicals need to be optimized rather than aiming for as high as they can be produced 
(Kruger & Dunning, 1999). Too much of the excitatory chemicals and one is easily distracted, while too little of them 
results in poor performance. Acetylcholine can help with the processing of information, helping align it with 
previously learned material that now resides in long-term memory (Beane & Marrocco, 2004).   

The information needed then is a general wave of data that clarifies where, relative to self, these chemical levels lie in 
comparison to where the optimal levels should be for the best learning readiness. To accomplish this, wearable devices 
would need to output in standard form readings of each of these chemicals’ levels, combine them meaningfully using 
advanced analysis techniques, and then provide that information to the learner, instructor/facilitator, and/or synthetic 
platform to help drive various interventions that will affect these chemicals and keep the learner in a constant state of 
heightened flow (Walcutt et al., 2020). Even basic interventions – such as taking a walk when arousal declines, 
listening to music when cortisol rises, or ensuring a proper breakfast that supports serotonin levels – can have a positive 
effect (Chae, 2020). More targeted interventions are expected to have a substantive increase in utility and impact. 

SYNTHESIS AND APPLICATION OF FEEDBACK 

Design of Learning 

Designing learning interventions based on neuro-data can be relatively simple to highly complex. At the lowest level 
of intervention, a dashboard providing a diagnostic review of the learner prior to learning can inform the individual 
or instructor about their readiness to learn and possible manually applied interventions, such as walking, focusing on 
specific types of knowledge, like declarative or integrated, or choosing a specific subject to learn. At the highest level, 
a highway of data, also known as a total learning architecture (Smith, Gallagher, Schatz, Vogel-Walcutt, 2018), can 
be created to ingest the neuro-data into a data lake of other information and use artificial intelligence analyses to 
determine the optimal interventions, focus areas, speed of instruction, and pathway for learning, which can be 
combined into an algorithm that drives optimized outputs for the learner and uses their created experiences to generate 
more data that continually improves the personalized model. Both levels, and many in between, are currently in 
development for deployment in the operational training areas. The precision of intervention is expected to correlate 
with the impact, but how much is necessary to achieve the optimized balance of data and personalized instruction has 
not yet been determined. For military specifically, the important lesson in this design phase is that the collection of 
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data is necessary. However, this reality is likely the most difficult to overcome, as it will require a shift in thinking 
about personal ownership over internal experiences that, to date, have not been readable by outside entities. 

Actionable Information 

One of the most important aspects of these technologies is to make the information actionable. This is where devices 
have failed in the past – by creating uninterpretable data dumps with which users are unable to do anything. Much like 
the NBA players with the Oura ring, learners would need to understand the “so what” of the data that is presented to 
them. In the context of the DoD, it would require individuals and supervisors alike to be able to read the data and 
interpret how they affect the current mission or daily task to be completed.   

The data cannot be overly simplified, either. A criticism of producing seemingly arbitrary scores, like readiness from 
the Oura ring, is their ambiguity, and without an understanding of what the data mean, the user is left to treat them as 
just that: arbitrary scores. However, it can help when the user knows that the readiness score incorporates body 
temperature, heart patterns, and sleep, and tools can further assist the learner by providing guidance on what those 
mean. Oura has done this in recent updates, indicating that scores below 60, for instance, mean to “take action to rest 
and recharge” (Carper et al., 2020).   

Information Accessibility 

The unfortunate side of application is trying to determine who has rights and privileges to the information that is 
gathered. Though these wearables provide information helpful to the user, how then can their organization, whether 
in a classroom or on a battlefield, be able to utilize the information without gathering the rest of it? The other question 
being if the instrument were able to provide additional information, would it be utilized?  

Take, for example, the roll out of Garmin watches that were provided to the US Navy’s F/A-18 and E/A-18 Growler 
aircrew. They were provided these watches to alert crews to the cockpit physiological episodes in the aircraft. The 
watch (Garmin 3 series) has the capability to track heart rate, physical metrics, sleep patterns, and even altitude, but 
the focus was on the physiological episodes. Could patterns have been tracked, or information gathered on aircrew’s 
restfulness, by requiring them to log their data to the Operations Duty Officer (ODO) before going flying? Likely, but 
then who would have control of the data? While it is a requirement for aircrews to have a minimum of eight hours 
uninterrupted rest prior to a flight event (Chief of Naval Operations, 2021), it is not enforced, despite the information 
being readily available.   

Like this thought, would the current DoD training and education framework be amenable to shifting learning battle 
rhythms and timelines for students who may not be ready in alignment with training and readiness milestones for their 
particular career path?   

Make Meaning of Information 

Moving forward, this will challenge learners, facilitators, and policy makers to define utility, discuss privacy, and 
intentionally plan for implementation of the information that can be provided by these wearables.   

At the individual level, they must take inventory of where their individual gaps may lie and, if offered the opportunity 
to utilize one or more of these tools, take into consideration where it may have improvements. If they are not provided 
by an organization, then the return on investment should be considered for purchase on one’s own.  

Additionally, the unit or organization must determine the worth of the information. As human performance 
optimization in the past has focused on physical readiness considering physical exercise and activity, diet, and mental 
readiness, it must consider in the future the ability to track the data, understand what their compilation means, and 
how to use the information. The organization must then also be ready and willing to adapt training plans or, when 
able, adjust mission to take advantage of the optimal state of readiness as collective of the unit’s individuals. 

Finally, policymakers need to question whether the right to data privacy outweighs the opportunity for optimization 
or even the ability to increase safety within a unit. Consider the example of the Garmin series watches given to an 
aircrew. Was a unit able to determine if there was chronic fatigue among its aircrew, and did it then have the ability 
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to prevent the next mishap due to poor decision making, which likely was a side effect of fatigue? Is the ROI then 
worth the cost of a wearable and understanding its data?   

SUMMARY  

Technology comes at a rapid pace, often at an increasing price, and with promises of affordances to the user. The key, 
however, is blending the emergent findings of cognitive science, research of modeling and simulation, and experience 
of training and education to make the most of it. Deliberately planning for the integration of the research into practice 
is the first step to this increase in return on investment. The next step is understanding what these technologies can 
present in feedback, potentially leading to the bigger leap toward improving human performance. Leadership should 
reflect on their organization’s receptiveness to these changes and adaptability to implement them. When they do, this 
feedback becomes immediately actionable and can result in growth in learning.  
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