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ABSTRACT 

 

Machine learning (ML) is all around us. From virtual assistants to automated testing, it provides capabilities that we 

now depend upon. Yet, while ML enables significant advantages in organizing and differentiating complex data in 

many domains, it has not yet made a significant impact on US Department of Defense (DoD) training systems or 

training methods. The question is not should ML be integrated into DoD training, but what techniques are efficient, 

effective, and feasible? The answer to these questions, and many others, are critical to developing the next generation 

of trainers and live, virtual, and constructive (LVC) training capabilities. The potential impact is vast, but well 

researched and intentional integration is crucial, as the costs will be significant. This paper describes ML and discusses 

emerging/innovative technological ideas on integrating ML into two categories of training systems. First are multi-

person training simulators, such as convoy trainers, which - with the injection of ML - could realize decreases in 

training time and increases in proficiency. Second, the analysis expands these insights into the context of LVC training 

simulations. For LVC, it summarizes precursor semi-automated systems, highlights current ML applications, discusses 

the roles ML could play in future LVC environments, and describes how these systems could be wrapped in advanced 

training delivery approaches. This paper concludes with thoughts and considerations regarding ML topics that are 

critical in simulation-based training (uncertainty, metrics, DoD/commercial interaction, and data) and then 

recommends possible next steps.  
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INTRODUCTION 

 

Machine learning (ML) and the resulting artificial intelligence (AI) are a 

part of our daily lives. From voice recognition and automated assistants on 

mobile phones to self-driving automobiles, ML/AI is all around us. And 

both have significant advantages: they don't experience fatigue, have 

personal error bias (although algorithms can be subjective), and can access 

information updates from the internet of things. However, ML/AI is 

scarcely utilized in DoD training systems or training methods, despite these 

and many other advantages. How, where, and to what degree should  DoD 

training systems integrate ML/AI? In studying the problem of how to 

integrate ML-based AI into new innovative training systems, there are many 

potential directions that could be explored. Each one of these directions 

brings about many questions.  

 

The answers to these questions are critical in developing the next generation 

of trainers; ones that incorporate AI and ML This area normally includes 

visual perception/facial recognition, speech recognition, language 

translation, system automation, and similar. Yet, our focus here is 

significantly narrower. It concentrates on ML/AI within US DoD training 

simulations. It does not address ML/AI in analytic simulations, simulation 

inputs (to train) ML/AI systems, or ML/AI use in automatous system 

control logic – even though these are all very important areas.  

 

This paper describes ML/AI within a subset of US DoD simulation-based 

training systems. It discusses the current state-of-the-art and important 

relevant goals, These are, in the most general sense: 1) Improved simulation 

capabilities (e.g., better Blue, Red, and White/Neutral Force inclusion and 

decision making representation), 2) Training delivery enhancement (e.g., 

adaptation of learning systems to the training audience), and 3) Training 

scenario advancement based on insights from force employment alternatives/outcomes discovered within ML/AI 

based simulations (e.g., innovations in tactics, techniques, and procedures (TTP) / emergent behavior) – in real time 

(during mission execution), just in time (immediately prior to debarkation), and in post-event/exercise scenario 

development and employment (e.g., future in-garrison training). This article also includes a discussion of the current 

state-of-the-art, development potential, considerations, and possible ways ahead. The three quotes above exemplify 

the duration of this pursuit, current interest, and one Service’s specific intent in this area, but they are a tiny subset of 

the statements of needs, requirements, goals, and similar that describe ML/AI within the US DoD simulation training 

community. 

 

 

DESCRIBING ML/AI AND SOME OF ITS VARIANTS 

 

To frame this discussion, a set of basic definitions are required – most are traditional; a few have been expanded to 

better apply to this domain. They are: 

• Artificial Intelligence (AI): An area of study and a set of programs that accomplish complex tasks – or that 

generate insights – that would normally require a human (Widman, 1990). AI programs may: Generate 

“There is a need to build simulations 

that are themselves learning agents - 

Able to compare their outcomes with 

actual results, assign “blame,” and 

adjust parameters in a semi-automated 

or automated way” (Surdu, 2007) 

 

“We all know that with VA, AR, LVC, 

AI, and the development of machine 

learning, we in the military, in the DoD 

are just too slow to take advantage… 

It’s a challenge we are all going to 

have to continue to face and work 

through.” (Drummond, 2017) 

 

“Artificial Intelligence and Big Data 

capabilities must be organic to, and 

reside within, the STE (Synthetic 

Training Environment) Architecture 

and the Training Simulation Software 

from the beginning.” (CAC-T, 2017) 

 

“Military officials and industry experts 

have long discussed how artificial 

intelligence can benefit the warfighter. 

… However, there has been much less 

emphasis on how it can improve 

modeling and simulations for training 

purposes…” (Tadjdeh, 2018) 
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behavior that is not completely described by an algorithm; Incorporate facts and relationships about the real 

world; Address ill-structured problems; and Maintain logic and data structures that allow explanation. 

• Machine Learning (ML): An application of AI that provides systems the ability to automatically learn (or 

learn in an automated fashion) and improve from experience without being explicitly programmed. ML 

programs search for useful representations of input data, within a hypothesis space, using guidance from a 

feedback signal (Chollet, 2018). 

• Types/Components of ML/AI: 

o Classic Machine Learning Approaches: Include probabilistic modeling, early neural networks, 

kernel methods, decision trees, random forests, and gradient boosting machines. They have less 

capability to adapt to data and improve their results in an automated fashion than modern methods. 

o Symbolic AI/Expert Systems (ESs): Programs that reproduce the behavior of a human expert within 

a specific area of knowledge (knowledge-based systems that capitalize on hindsight/experience) 

o Neural Networks (NNs): An information network consisting of input, hidden (if any) and output 

nodes. In single layer feed forward networks, inputs are fed directly to the outputs via a series of 

weights (there are no cycles). In neural networks, the most popular learning technique is back-

propagation and its variants, in which output values are compared to the correct answer and weights 

are subsequently adjusted. Two types of NNs warrant additional definitions: 

▪ Deep Learning NNs (DLNNs): Multi-layered NNs that emphasize learning from 

successive layers of increasingly meaningful representations.  

▪ Generative Adversarial Networks (GANs): A system of at least two NNs (generative and 

discriminative) contesting with each other in a zero-sum/minimax game framework.  

o Dynamical ML: Machine learning that can adapt to variations over time. It requires real-time 

recursive learning algorithms and time-varying data models (Madhavan, 2017). 

o Genetic Algorithms: A metaheuristic inspired by the process of natural selection that relies on bio-

inspired operators like mutation, crossover, and selection (Melanie, 1996). 

▪ Genetic Fuzzy-based AI: Programs that implement a Genetic Fuzzy Tree (GFT) 

methodology, using a collection of fuzzy inference systems that are trained. 

o Agent / Multi-Agent-Based Models: Systems that are composed of multiple interacting entities that 

may exhibit self-organized / emergent behavior. 

o Cognitive Models: Rule-based semantic networks / production rules that implement problem 

solving capabilities, some of which can form new operators/rules from those that exist as needed. 

• Human-Level Artificial General Intelligence (AGI): The development and demonstration of systems that 

exhibit the broad range of general intelligence found in humans (Adams, 2012). 

 

The overall goals of ML/AI application to simulation-based training have been summarized above. Yet, it is important 

to add that within each of these areas, there are many potential specific objectives. For instance, in decision maker 

representation/replication (Blue, Red, and White/Neutral), specific objectives include developing ML/AI systems that: 

mimic human cognition, replicate human biological systems, model human behavior (e.g., fatigue), include multi-

human interactions, etc. Unfortunately, many are beyond the scope of this paper. 

 

 

FOCUS AREA INSIGHTS 

 

Possible applications of ML/AI will be examined within simulator-based training systems and Live, Virtual, and 

Constructive (LVC) training federations. These two case studies provide a set of “book-ends” – one focused on direct 

extensions to current capabilities that can provide near-term results. The second, LVC, is a much more complex 

simulation training environment, in which some types of ML/AI systems already exist, while at the same time there 

are sophisticated requirements that will require long-term planning and solution development. 

 

Current and Potential ML/AI in Vehicle/Simulator-based Training 

 

Here the focus is on simulators – that is “a machine with a similar set of controls designed to provide a realistic 

imitation of the operation of a vehicle, aircraft, or other complex system, used for training purposes (the virtual (V) in 

LVC). They are in the same category as emulators, computer-based embedded trainers, appended trainers, etc. 
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Simulators are used widely by the services to train personnel in vehicle operations. With respect to a convoy or driving 

training system there are four basic parts: the hardware (the vehicle emulator), the software (the scenarios and the part 

that analyzes the trainee's input), the trainee, and the trainer (see Figure 1). For instance, the US Marine Corps uses 

the Combat Convoy Simulator (CCS) and the Operating Driving 

Simulator (ODS) with the US Army using similar systems as well. 

The CCS facilitates training for convoy tactics, techniques and 

procedures, use of weapons in compliance with the rules of 

engagement, and verification and validation of unit standard 

operating procedures. On the order of 20,000 Marines are trained 

each year in the CCS. The ODS trains vehicle operators on multiple 

vehicle platforms. The trainer uses a manufactured cab with 

interchangeable dash sets that replicate the look and functionality 

of the vehicle chosen for simulation. The systems are equipped with 

three-degrees-of-freedom seat motion for the driver and 180 

degrees of visual display via three electronic displays. Roughly 

15,000 Marines are trained each year using the ODS. Incorporating 

ML/AI in either of these systems could have great advantages. The 

questions that arise focus around into what component do we inject 

AI and what are the expected benefits? 

 

Hardware can be considered in two forms: the physical structure of 

the simulator and the electronic devices embedded within the 

structure that control the simulation. Certainly, the physical 

structure would need to represent the actual vehicle as closely as is 

possible, as it does currently. The application of ML/AI would not 

affect that element. However, the embedded electronic hardware 

would be required to change. The embedded hardware would need 

to be powerful and fast enough, dedicated boards with multi-thread, 

parallel processing capability with multi-gigabyte on-board 

memory, to process the AI algorithms and data inputs in real-time. With current technology these types of boards are 

affordable and are in the $500-$1000 range. The AI algorithms could reside in firmware which would allow for updates 

to the algorithms. However, typically firmware only applies to the functioning of an individual component and not the 

more general software system. Therefore, the impact to embedded hardware would be to upgrade the components to 

possess significantly increased capability. 

 

Software is the brains of a simulator system. The scenarios, input processing, and outputs are all controlled through 

extensive software modules. For ML/AI to impact training, it will have to reside in the software modules since it 

would process inputs and impact outputs of the simulator. This is not surprising. However, given the lack of AI in 

current simulators, it can’t just be appended to the current systems as an optional add-on. It has to be ingrained in the 

very fiber of the system to function most effectively: fully embedded in the software and a part of the algorithms that 

govern the simulator behavior. In other words, it isn’t just an upgrade to the current systems, it is a whole re-design. 

One might think that this level of processing can’t be done in real-time and the simulator will then be a poor reflection 

of the live system as the response time will lag. However, the relatively recent research on autonomous vehicles would 

cast doubt on that argument (Kendall, 2017). Given that vehicles are able to navigate even complex routes 

autonomously at prevailing traffic speeds, it would seem logical that simulators could process inputs and provide 

correct outputs in real-time. 

 

This brings us to, how does ML/AI impact the trainee? One answer to that question is that the infusion of ML/AI 

should heighten the training experience and increase the effectiveness of the training. One such example would be 

“adaptive training”. Adaptive training is training that adapts to the trainee’s inputs and provides more training where 

needed. For example, if a trainee has a difficult time maintaining proper following distance under threatening 

conditions (the situation where an enemy is present or is expected to be present), then the AI in the system would 

present more of those situations and less of routine convoy driving. Or, if a trainee is not scoring well on using the 

0.50 caliber machine gun, then the AI in the simulator puts that trainee into more situations where firing the 0.50 

caliber is required. Conversely, if a trainee has mastered a certain task, climbing steep hills in rough terrain for 

example, then the AI presents less of those situations to that trainee. Additionally, the AI should provide feedback for 

Figure 1.  Components of a Simulator 
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why the trainee did not complete a task well so that training and learning are achieved and not just repetition of the 

same flawed tactics. By training in this fashion, a trainee becomes more proficient in a shorter period of time since 

they practice their weak areas more and their strong areas less. Therefore, the end result is more effective training as 

the trainee increases his/her proficiency in less time. While there are other potential uses for ML/AI in driving 

simulators, such as predicting trainee behavior based upon a larger training group, adaptive training seems to be one 

of the most useful (Hercenberg, 2008). 

 

For the trainer, ML/AI would have significant impact. No longer could a trainer set a scenario and then sit back 

knowing each task presented and the sequence of that presentation. Each scenario would change based upon the 

trainee’s responses. Some might say that the trainer could be replaced, or at least partially replaced, by the AI in giving 

feedback, providing suggestions, etc. More likely, the trainer will need to be better trained and more proficient than 

ever since the scenarios are no longer completely predictable. Currently, a trainer knows those tasks that a particular 

scenario trains and may just brush up on those items for that training session. A system with infused ML/AI is less 

structured and somewhat amorphous, requiring the trainer to be ready to critique and provide feedback for a much 

bigger task set, whether it be in real-time or as an after-action debrief. In this new mode trainers will need to be better 

prepared and more proficient at their craft to incorporate the new technology. H. J. Wilson posits that AI will bring 

about a new collection of jobs; one of those being an “Explainer” (Wilson, et al, 2017). In this case, the explainer 

would use the AI feedback and ensure the trainee interprets it correctly and knows how to correct the deficiencies in 

his/her task performance. This will require the trainer to have a higher level of proficiency in both the real and the 

simulated system. 

 

The discussion thus far has focused on the simulator itself. However, there may be additional uses for AI in simulator-

based training that do not impact the simulator operation. For example, applying AI in scenario development could 

assist in generating more efficient scenarios. In this case, the ML/AI system would input a list of tasks and be asked 

to build the most efficient set of scenarios that train all the tasks. While the tasks would contain terrain specific tasks 

(i.e. turning on hills, driving in very rough conditions, driving through shallow water, etc.), these scenarios wouldn't 

have to be tied to a specific geographic terrain. Currently, much driving training is tied to simulated terrain in 

geographic locations of interest. In the spirit of “train as you fight”, it would be beneficial to use ML/AI to build 

efficient scenarios in geographic specific locations as well thus enhancing pre-deployment training. Training on more 

efficient scenarios would enhance, hasten, and improve training especially in the time-starved pre-deployment phase. 

Current plans are to include simulators such as the CCS in a persistent training framework utilizing the LVC model. 

The next section widens the aperture to envision ML/AI applied to an LVC framework and the corresponding 

efficiencies. 

 

LVC-based Training 

 

The nomenclature, “Live, Virtual and Constructive (LVC) simulation” was first introduced in 1989 and is a widely 

used taxonomy to describe the individual components or the aggregation of live, virtual, and constructive simulations. 

1  While LVC may not be the most inclusive way to describe how simulations/synthetic systems can be used by humans 

(in this case for training) and incorporate ML/AI, it bounds this discussion using a construct that is both legitimately 

discriminating and currently popular. Hopefully, the increasing interest in ML/AI will allow the expansion of these 

LVC-oriented insights to other relevant areas.2 A live simulation is one involving real people operating real systems; 

a virtual simulation is one involving real people operating simulated systems; a constructive simulation is one 

involving simulated people operating simulated systems (note: real people can be allowed to stimulate (make inputs) 

to such simulations) (DoD, 2016). It has been widely reported that Northern Edge 2017 - a joint training exercise 

involving all US military services - was the largest live, virtual and constructive air-to-air training event at that time 

and first to integrate all LVC elements for advanced personnel training. 

 

                                                           
1 The term “LVC” was first used in 1989 (per 30 April 2007 informal communiqué by Gen. Paul Gorman (USA ret.) and Gen. 

Larry Welch (USAF ret)) and was officially published by the Defense Science Board on advanced simulation (Braddock, 1993).  
2 Other relevant areas include personal immersion and presence; virtual environments, reality, and worlds; synthetic environments; 

mixed and augmented reality, etc. 
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A generic LVC graphic has been 

developed (see Figure 2) to display 

the main components of an LVC 

event. It generally follows the 

format of an DoD Architecture 

Framework (DODAF) Operational 

Viewpoint (OV)-1, which 

describes a mission (in this case 

training) and displays interactions 

between and among the 

participants, the subject 

architecture and its environment, 

and also between the architecture 

and its external systems (DoD 

CIO, 2010). This graphic includes 

seven components that are critical 

to the delivery of all LVC-based 

training. Two, architecture and 

networks, provide connectivity 

and technical infrastructure. Two 

others, scenario and timing, 

control when and what is trained 

against. The environment 

represents the battle space and 

synthetic forces the 

complementary forces. The 

seventh component is the learning environment that manages the event and analyzes the results. Each of these 

components enable training to be delivered to the learning audience (the trainee). In subsequent sections, this structure 

will be used to describe ML/AI current and possible future LVC capabilities as well as possible future ML/AI 

enhanced training delivery capabilities. 

 

When one searches for AI or automated forces/capabilities in US DoD simulation-based training systems, the results 

often include historical examples, some of which continue to be developed and used (see table 1). Currently there are 

many software systems that provide AI, and in some cases ML, functionality to/within LVC simulations. Although 

significant research has gone into identifying and characterizing them here, it’s acknowledged that this list is 

incomplete. To help describe these software systems it is useful to note that many provide decision maker 

representations or augment decisions made by simulation users (the 

Synthetic Forces box of Figure 2). These systems’ representations of 

personnel (and sometimes groups) often apply to blue/friendly 

personnel, red/hostile/opposing forces (OPFOR), and white/neutral 

participant’s cognitive, behavior, and/or decision processing. 

Examples include: 

 

• Adaptive Character of Thought (ACT-R) – Combines a 

semantic net with rule-based representation to provide 

memory representation and inferencing (NRC, 2008). 

• State, Operator, and Results (SOAR) – Uses production rules 

to implement problem solving and can create new 

operators/rules from preexisting constructs (NRC, 2008). 

• ALPHA – An artificial intelligence that controls flights of 

unmanned air vehicles in aerial combat missions using 

genetic fuzzy tree / logic-based constructs (Ernest, 2016). 

• Simulated Cognitive Cyber Red-Team Attacker Model 

(SC2RAM) – A synthetic, offensive, cognitive agent that 

emulates real attackers via modeling thoughts, decision 

making, and understanding (ONR, 2017b). 

Figure 2. LVC OV-1 for AI/ML Analysis  

Table 1.  US DoD M&S Semi-Automated 

Forces:  History - Highlights 
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• Dynamic, Adaptive and Modular (DYADEM) Entities for Unmanned Aerial System Training – Creates 

individual ship behaviors and patterns of employment (ONR, 2017a). 

• Hybrid AI/Cognitive Tactical Behavior Framework for LVC – Advances the areas of simulated people 

including path planning, team behavior, working memory, and attention (Xavier, 2012).  

 

Along with these current ML/AI simulation capabilities, given LVC’s requirement for an implementing infrastructure 

(distribution approach, federation, etc.) it is useful to note that current instantiations (Distributed Interactive 

Simulation (DIS), High-Level Architecture (HLA), Test and Training Enabling Architecture (TENA), etc.) allow for 

but do not explicitly include or enable ML/AI. It would be useful to extend to these current frameworks an approach 

previously developed to analyze AI within Distributed/Federated Architectures (Abdellaoui, 2008) to gain key insights 

in the: 

• Availability of built-in AI modules or functionality (e.g., NNs) 

• Ability to modify entity behavior pre and during runtime 

• Presence of an external interface to enable entity control, information transfer, etc. 

 

Since training events that combine L, V, and C require an architectural infrastructure, further research, using these 

criteria and others, is required. 

 

There are many ways that ML/AI could provide additional capabilities within live, virtual, and/or constructive 

simulations used to train individuals and groups, across all US DoD echelons-of-command. First, LVC provides a 

more general case for the above discussion on vehicle simulators regarding the value of a training system adapting to 

the trainee / training audience (the Learning Environment oval in Figure 2). I.e., “It’s a combination of very high 

simulation technology, very high-fidelity simulators, with feedback that is tailored to you.” (Richardson, 2017). In the 

case of LVC, that tailoring needs to take place within numerous training systems, as they present content to hundreds 

of participants, across geographic locations and US Department of Defense and Department of Homeland Security 

military services. This exceptionally complex multi-variate domain provides an excellent environment for ML/AI, 

with its ability to ingest data and outcomes, and develop implementing rules. 

 

Next, ML/AI can, similarly ingest data and outcomes, and develop (and extend) rules, that reflect a real-time 

understanding of the battlefield, especially the enemy’s order of battle (strategy, operations, and tactics), relative to 

scenario and terrain variations (the Scenario box of Figure 2). Again, the battlefield is a complex multi-variate domain, 

within which ML/AI can provide a unique understanding. This is true for real-time (mission planning, rehearsal, and 

execution) but perhaps equally important to adapt LVC training systems to account for longer term 

red/threat/opposition order of battle (OOB), concepts of operation (CONOPs), concept of employment (CONEMP), 

etc. Similarly, this same concept applies to blue/friendly/coalition/partner’s order of battle (OOB), course of action 

(COA), concept of operations (CONOP), and CONEMPs – all that can be provided to DLNNs, GANs, GFTs, and 

similar for analysis and insights. It is obvious that these techniques apply to the training of US DoD personnel in 

traditional warfare areas (air, land sea) but also to new areas (space, cyberspace, cognitive-space (the next version of 

information warfare, psychological operations, etc.).  In all cases ML/AI is suited to providing deep and unique 

scenario insights which are able to provide a new level of training realism and, thereby, increase force readiness. 

 

Third, US DoD LVC training events can benefit from the application of ML/AI to assess and understand the big data 

sets they generate (the Analytics component within the Learning Environment oval of Figure 2). Such big data 

analytics using ML/AI is currently being conducted in support of DoD operations via efforts like Project Maven. 

Project Maven is assisting military analysts as they sort through the vast amounts of data that are discovered by US 

sensors and drones. In fact, this ML/AI system and its utilization are designed to improve: “With AI, if you give that 

airman in the field an 80 percent capability, and a good user guide,” both the user and the tech have room to grow, 

Floyd said. “You want to give them ability to improve it on the fly, and we’re inventing some of those processes to 

do that. You deploy something that’s not 100 percent, you know that on day one you’re going to retrain it, and then 

you go from there.” (McLeary, 2018) That advancement of ML/AI technology and supporting processes/personnel 

applies equally to LVC simulation-based personnel training. 

 

Finally, ML/AI have potential to provide significant functionality within many other areas of LVC-based training. 

They could optimize networks, reduce latency, and efficiently distribute resource requirements as well as supporting 

the design, deployment, and use of required distribution/federation architectures (the Architectures Synthetic Forces 

boxes of Figure 2). They could advance the inclusion of environmental parameters in simulation-based training events 
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by providing insights on when, where, and in what context the myriad of possible weather effects significantly impacts 

force employment outcomes (the Architectures Synthetic Forces boxes of Figure 2). Lastly ML/AI could aid in better 

understanding of the delivery, pace, and content of specific/just-in-time training, pre-deployment refreshers, and long-

term educational opportunities. 

 

 

THOUGHTS AND CONSIDERATIONS 

 

The idea of infusing ML/AI into our daily lives used to be a science fiction topic, much like space travel. While space 

travel isn’t presently an everyday occurrence, AI and ML are used by the average person virtually every day. However, 

neither AI or ML are currently embedded into DoD simulation-based training systems. What would it take to get 

there? Embedding ML/AI into the kinds of systems discussed above is not insurmountable, but will take deliberate, 

intentional, planned efforts. As a result, there are many relevant thoughts and considerations that arise. 

 

While ML/AI will generate solutions and insights that are brilliant and potentially extremely innovative, they may – 

and currently are, especially DLNNs – doing so without their logic being amenable to inspection, understanding, or 

perhaps recreation / reproducibility (Ackerman, 2017). Thus, Lee SeDol’s observation in the 37th move of the 2nd 

game of Go, that what AlphaGo produced – “It’s not a human move. I’ve never seen a human play this move. So 

beautiful.” (Metz, 2016). Such events violate the human need to maintain logic and data structures that allow 

explanation – for verification and validation with empirical data; and for control. This point is recognized for ML/AI 

generally, and here is highlighted for simulation-based training (Ilachinski, 2017). Given current directions in ML/AI 

where the ML system is being asked to both differentiate data and to build a ML network which is the most effective 

in training on that data, this inexplicability of how outputs are generated from inputs will only worsen. As a result, 

there is a need for uncertainty estimation/consideration and mitigation/remediation of that uncertainty. That is, 

advances that allow insight into the degree to which the results are inexplicable/incomprehensible, approaches for 

conditionalizing the answers generated (based on that degree), methodologies for decreasing the severity of the impact 

of these uncertainties, and approaches to decreasing the uncertainty itself; these will all be important in applying 

ML/AI to simulation-based training. 

 

There are currently significant insights on how to measure the impact of simulation / LVC use; within training, 

assessment, and acquisition. These include metrics that reflect enterprise, application area, and program level impacts; 

key results, cost, timing, and risk dimensions; as well as how they correlate / cascade from the most global goals (win 

the war) to lower level impacts at operational, tactical, and mission levels (Tolk, 2017). Yet, these measures do not 

reflect or account for the degree to which a simulation/LVC environment can learn or innovate, improvise, and 

extrapolate – i.e., to embody some degree of human-level artificial general intelligence – to meet a service goal, like 

training. This idea is once again a subset of a larger conclusion, that there is a need to develop measures of merit for 

autonomous systems (Ilachinski, 2017). So, it is important to assess ML/AI qualities in simulation-based training, 

perhaps in part by adapting and extending measurement approaches found in education, business, technology 

development, and software engineering that are used to assess these qualities. Possible areas of investigation include 

measuring the initial and final state of a learning system (or person/student), its ability to adapt/incorporate newly 

discovered variables, and the degree to which the final ML/AI system accomplishes complex tasks – or generates new 

insights – both relative to the pre-existing condition and to some ‘absolute’ (Kelvin-type) scale. 

 

There is no dispute that ML/AI technology is advancing rapidly in the 

commercial/corporate sphere and that DoD’s relation to that world is 

tenuous at best. Earlier this year, project Maven was in the news after 

3,100 Google employees signed a letter protesting their company’s 

involvement (McLeary, 2018). In addition, DoD system design, 

development, and deployment timelines are also out of sync with the 

urgency associated with the need for improved training – it takes 8-14 

years to develop and deploy a revolutionary system. This means it is 

critical to improve the mechanisms available to DoD for discovering, 

adapting/adopting, integrating, and deploying commercial ML/AI into 

its LVC training simulations. This is in addition to the need to decrease 

the elapse time in acquiring and employing these systems. 

 

Regarding DoD’s development and use of 

AI/ML, which many see as groundbreaking 

technologies, “The Decker-Wagner report 

advises the Army to manage risk in its 

acquisition portfolio by limiting the 

proportion of higher-risk programs to “only 

those [systems] that are truly urgently needed 

because they represent ‘game-changing’, 

revolutionary military capability…” “It also 

cautions that you should expect an 8- to 14-

year development cycle … for such systems, 

even if you do everything right.” (Tate, 2016 

and Decker, 2011) 
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There are many issues relative to data. First, to infuse ML/AI into a system, data must be collected to so that the ML 

system has a data set from which to learn. It must learn a good response (the “gold standard”) from a bad and the point 

at which the response changes from good to bad, understanding that in many cases there are levels of goodness as 

responses are on a continuum and not a digital scale. The gold standard response would be best coming from 

operational data on live systems, but potentially could be determined from mathematically based models of the live 

systems. Therefore, ML/AI systems must be designed, and the data collected for ML based upon these designs. Many 

of the ML/AI systems employ Deep Learning and most of the data sets used in these systems fall into the category of 

Big Data – at least terabytes. However, at an individual level and even perhaps a training system level, it would take 

an extremely long time to generate and collect that amount of data (e.g., in the CCS, which trains 21,000 Marines each 

year, if each Marine performs a task 5 times in the simulator that provides 105,000 data points, in a year). LVC events 

(some of which include thousands of service personnel, hundreds of pieces of equipment, all military services, etc.) 

on the other hand, could generate Big Data. This should enable the enhancements discussed above, but relative to 

LVC event generated data, it will need to be normalized since it will be generated under differing conditions (i.e., 

accuracy, periodicity, etc.). In either case, data sets, even smaller ones, can provide input into ML algorithms and can 

be useful (El Deeb, 2015), but the data first needs to be collected. After the collection of the data, some data analysis 

would need to be done to “clean” the data3 and to understand the data’s characteristics, more important for small data 

sets than for Big Data. Once this is complete, ML algorithms can be applied, and the results analyzed and tested.   

 

 

CONCLUSIONS AND NEXT STEPS 

 

ML/AI isn’t new, but the current applications driven by hardware advancements are things only dreamed about 20 

years ago. ML/AI has the potential to revolutionize how the DoD trains (and fights), however, current simulation-

based training systems trail ML/AI use in industry. A well-planned, intentional, and methodical incorporation of 

ML/AI into simulation-based training, at the individual simulator level or the broader LVC level, could significantly 

increase training efficiency and efficacy. While the cost of incorporating ML/AI could be significant4, the savings by 

reducing training time and improving proficiency would be substantial as well. Given the potential, studies that move 

this discussion to the next level and fill in some of the details are critical in developing the technology and increasing 

the DoD’s readiness posture. After that, collecting key data will be necessary, followed by the implementation of ML 

and the integration of the AI algorithms into simulation-based training systems. The sooner the process starts the 

sooner the DoD will have next generation training capability. 

 

Especially in an area as diverse and rapidly advancing like ML/AI there is an imperative to actively engage, 

collaborate, and coordinate with the performers and participants. For the DoD simulation-based training community 

this includes resident centers, laboratories, and facilities; training and training support processes and initiatives; as 

well as commands, organizations, and universities. But, as noted above, perhaps more important is proactive outreach 

and interaction with commercial, corporate, and industrial partners; academic, research, and non-profit organizations; 

along with non-DoD US Government entities. Effective outreach, engagement, and collaboration requires planning. 

There is a need to develop DoD simulation-based training road map, that includes these activities, but that also 

provides overall goals and objectives, sequencing of activities, and investment means and mechanisms. 

 

As in any emerging research or technology area, focused analysis and technology demonstrations are extremely useful. 

The Australian defense establishment has recognized this and has begun a dedicated effort that includes ML/AI (Rowe, 

2017). US DoD organizations like DARPA, IARPA, etc. provide and excellent environment (charter, skills, processes, 

and resources) to conduct such activities. In addition, the DoD community conducts technology and advanced concept 

demonstrations, challenges, feasibility experiments, etc., all of which could be used to expand the understanding and 

use of ML/AI in DoD simulation-based training. 

 

In many ways, like the need for verification, validation, and accreditation (VV&A) in autonomous systems/robotics 

development and in automated testing, VV&A of training systems that employ ML/AI is extremely important. The 

delivery of negative training based on erroneous insights or actions of employed supporting systems is always a 

concern. This concern is magnified when these systems are very complex, interdependent, distributed, and heightened 

                                                           
3 Cleaning the data is a process where obvious incorrect entries, garbled data, or blank records are deleted. 
4 Estimating the cost of building AI/ML into simulation-based training is outside the scope of this paper and would require a 

significant amount of details that are unknown at this time. 
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even further when they provide capabilities that would normally require a human, like M/AI provides. There have 

been VV&A framework developments for low-level VV&A activities that seek to “improve the consistency and 

efficiency of M&S federations in the support of autonomous system development” that should be extended/adapted 

to the use of ML/AI in simulation-based training (Tremori, 2017). In conclusion, as important as ML/AI are to DoD 

simulation-based training, and given the scope of the research, analysis, and implementation opportunities and 

challenges touched upon here, we look forward to future endeavors! 
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