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ABSTRACT 
 
"Big data" (data often characterized by its volume, variety, velocity, veracity, and value) has been touted as the antidote 
to myopia and poor outcomes in data analysis and decision-making; yet this antidote only works if the recipient truly 
understands where big data succeeds and fails. A complex adaptive system (where understanding the parts does not 
imply understanding of the whole) is a case where big data alone is not the solution, because these vast, dynamic and 
constantly growing data introduce problems of explainability. Our present work concerns the comprehension of such 
a system, using big data and adaptive training as catalysts for a two-pronged approach to uncertainty and change over 
time. Our approach is separately prescriptive and descriptive. We focus on team training and how measurement of 
team performance may be made comparable, despite changing tactics, techniques, and procedures (TTPs). In our 
prescriptive approach, we specify a Probabilistic Graphical Model that inputs team performance across exercises, and 
we show how measures under different TTPs can be used to derive assessments of team and individual readiness and 
used, in turn, to prescribe training. In our descriptive approach, we extend techniques of automated machine learning 
(autoML) to help instructors explore and comprehend training data results at different levels of granularity (individual, 
crew, team-of-teams) and from different points of view (using the end-user's own inquiries to suggest other features 
of interest in the data). Our combined approach leverages machine learning algorithms for big data and the critical 
thinking skills of the human end-user. 
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INTRODUCTION 
 
Throwing “big data” at a problem can be like throwing water on a grease fire---not only is the fire not contained, it is 
likely to spread. In this paper, we consider data related to training aircrews in the US Navy, specifically those of the 
Boeing P-8A Poseidon, whose readiness and qualification for deployment depend critically on proficiencies (both 
individual and crew) acquired over many hours of training under many different conditions. Qualification depends, in 
part, on the crew meeting or exceeding certain thresholds of performance on specific tasks. However, crew 
performance is not simply a function of the crew’s capability but of the crew’s capability conditioned on such things 
as equipment (malfunction or failure), environmental conditions, the vagaries of individual evaluators (because some 
evaluations are subject to interpretation), and changing tactic, techniques, and procedures (TTPs; given the adaptive 
nature of warfare). Understanding the effectiveness of a training regime across aircrews and over time means 
controlling for all of these variables, and more. While collecting all kinds of data might seem like a sensible approach 
to addressing this challenge, not all data are equally important, and without some scheme to put them into context, the 
data may mislead. 
 
How are matters handled today; and what are the limits of current practice? The collection of immense sets of data 
is not a new concept for the US Navy and has been an integral part of its culture for much of its history. Training 
wings and squadrons were required to keep track of certain pieces of information that would, in turn, be passed up the 
chain-of-command to help evaluate individual, crew, squadron, wing and force-wide proficiency. Unfortunately, the 
amount, accuracy, quality, utility, and timeliness of data provided to command leadership was greatly limited by 
available technology, resources, and storage and retrieval capacities. Advances in simulation-based training 
technology, automation, and cloud-based server technology has alleviated many of the challenges associated with the 
collection, organization, integration, analysis, and interpretation of these big data sets (Atkinson, Tindall, Sheehy & 
Bailey, 2016). Additionally, these technologies enable almost real-time assessment of proficiency. For example, data 
from simulated or live training events are uploaded to servers immediately following the completion of the event and 
are ready for integration and analysis. While these advances in training and data storage technologies have clear 
benefits, they also create new problems that must be addressed if we are to get the most out of our data. For example, 
when you collect and integrate data in near real-time, specifically in environments that are inherently dynamic (e.g., 
military), you can quickly run the risk of making invalid assertions about your findings. The US Department of 
Defense (DoD) is still in the early stages of being good stewards of big data and, as a result, is still understanding big 
data’s benefits and limitations. Big data requires context to be useful. In this paper, our context is a theory of 
operations about aircrew training and the corresponding need to comprehend and think critically about the data 
collected. 
 
What is new in our approach; and why do we think we will be successful? Our purview is holistic; by incorporating 
multiple different elements at different grains into analysis, we expect to improve our understanding of our domain, 
which is likely to lead to insight and more informed decision-making. Implicit in our approach is the recognition that 
we know things about the context and provenance of our data that allow us to specify relationships among various 
inputs mathematically and then to make inferences about those inputs. However, we recognize that one cannot know 
everything about one’s data, especially data representing a complex adaptive system. This is why we need to remain 
critical of our mathematical models---using them as tools for insight rather than proclamations of state. This is why 
we also need mechanisms to explore the data, to help us identify gaps in our understanding. Playing “what-if” games 
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with our model parameters can lead us toward such understanding, but so can exploration of raw data and descriptive 
statistics. 
 
Who cares? What difference will our approach make if we are successful? The desire for systems and technology to 
assist in the management of big data within the DoD is well-documented. Vice Admiral Dunaway (2015) implemented 
a Naval Air Systems Command (NAVAIR) data strategy requiring alignment of resources to support readiness and 
predictive, tactical, and strategic use of data while leveraging the science of learning to optimize aircrew proficiency. 
Major Blair (2015), of the US Air Force, challenged the military to better utilize the vast amounts of data we already 
collect for training and decision-making purposes. Additionally, Rear Admiral Morley (2016) offered strategic 
guidance requesting open architecture systems that are modular, scalable, and interoperable across platforms. DoD 
leadership has moved past simply recognizing the criticality of the collection of data and clearly understands the 
challenges and opportunities that exist when systems are developed to manage streams of data. Our approach is first 
about methodology (a way of thinking), second about technology (the supporting apparatus). If successful, we expect 
that our advances in both will facilitate the use and utility of big data in ways yet unimagined. 
 
 
METHODOLOGY 
 
Our approach is simultaneously top-down (prescriptive, confirmatory) and bottom-up (descriptive, exploratory). (See 
Figure 1.) We theorize that comprehension of aircrew training over time depends on both components. The 
prescriptive portion uses an existing data model to draw conclusions about trainees from measurement data. The 
descriptive portion uses new training data to refine that model. These two components can inform one another. 
 
Our top-down component is predicated on the idea that we have 
some knowledge about how training works in the domain of interest 
and that we wish to use those assumptions to drive training. If 
applied to aircrew performance training data, standard approaches 
would require data to exhibit invariant comparison (time-
invariance, for example) and sample independence. For example, in 
higher education, scores on high-stakes tests such as the SAT and 
GRE are among the criteria used to filter university applicants. The 
success (continued use) of these tests depends on the comparability 
of test scores over time despite variability among test questions. 
This is the realm of Item Response Theory (IRT; Lord, 1980), 
which is often employed to verify and validate test effectiveness. 
IRT is a family of models that focuses on a trainee’s performance 
on an item (a test question or task) and establishes the probability 
that measured performance will be acceptable, given trainee’s skill 
level and item difficulty. 
 
However, in training, the assumptions made by classic IRT break 
down, in a number of ways. First, during training, trainee skill level 
changes as trainees improve. At the beginning of a training exercise, 
skill level may be low, but after the exercise, the skill level 
improves. Bayesian Knowledge Tracking (BKT, Corbett & 
Anderson, 1995) models this, and is combined with IRT in our approach. Second, Navy tasks are performed by teams 
of people, not just individuals, so each performance measure may be relevant to only some of the trainees, and each 
trainee will have his or her own skill level. In our approach, IRT is extended to account for multiple trainees. Third, 
in operational Navy settings, “items” are not static constructs. Rather, the Navy performs and encounters TTPs that 
change over time; teams that have mastered one TTP may find themselves encountering a new TTP, and their mastery 
may or may not be relevant to the new TTP. Thus, we need to incorporate more detail about training items in modeling. 
More specifically, a measure during a training exercise should not be reduced to a simple “item” identifier; rather, the 
descriptors (metadata) associated with that measure and exercise should be used in evaluation. 
 
Ultimately, training measures must be turned into assessments. We regard assessments as the constructs that give 
meaning to measures—they are interpretations of measurements in the context of expectations. While Performance 

Figure 1. Concept of operations. Our Top Down 
component uses a model of the training domain, 
training exercises, metadata on training exercises, 
and student learning curves to analyze incoming 
data. Our Bottom Up component uses new data, in 
part, to refine the model. 
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Measures (PMs) of the kind represented in the P-8A Wing Training Manual (WTM) are vulnerable to changing tactics, 
assessments represent skill proficiency and therefore persist despite these changes. The relationship between PMs and 
assessments can be complicated and nonlinear. Fortunately, objective PMs are sometimes accompanied by observer-
based assessment labels from subject matter experts (SMEs) that may yet be supplemented by analysis of “big data”. 
 
Our top-down component uses a model that accounts for all of these challenges. The model inputs training data 
(measures and information about training exercises, including the TTPs used). It outputs training assessments, and 
can also be used to make training recommendations. However, this model contains various parameters (difficulty of 
exercises, linkage between TTPs within an exercise and trainee skills, etc.) that affect the conclusions of the model. 
Two means exist for determining the correct values for these parameters. First, SMEs can work in collaboration with 
data scientists to assign them. Second, performance data can be analyzed to learn the parameters. This second option 
is one potential outcome of our bottom-up approach. 
 
Our bottom-up component is about exploratory data analysis, where the data elements themselves are the objects of 
interest. Here we consider what may be learned from associated descriptive statistics, correlations, data visualizations, 
and facilitated mathematical modeling (automated machine learning or autoML). Thus, the bottom-up approach is 
about developing capabilities that allow us to learn about our data---to find peculiarities and patterns within them that 
help us generate or answer related questions.  
 
The methods we describe herein are not specific to one dataset; they are applicable to the particularly challenging 
domain of adaptive training generally. In the next section we describe the methods that we developed as well as proofs-
of-concept using synthetic data. 
 
RESULTS 
 
We report here on efforts to build software to address the three challenges discussed in the last section: (a) trainee 
skill levels are dynamic, given exposure to training itself; (b) many latent skills exist, because in our case, and in part, 
training is for teams, not for individuals; and (c) changing TTPs change the identity of an item (such as a task). 
 
We began our exploration of top-down modeling techniques using Rasch measurement and analysis. A Rasch model 
is often regarded as a one parameter IRT model. It is prescriptive rather than descriptive: data is fit to a model rather 
than the reverse to help illuminate sources of variance. It also deals more effectively with Simpson’s paradox (see 
Kievit, Frankenhuis, Waldorp, & Borsboom, 2013): rather than introducing dependencies when collapsing 
dimensions, the approach endeavors to separate observations to make dependencies vanish. 
 
In practice, one could encode scores on a test as ordinal measures and then fit those measures to a one-parameter IRT 
model. The variable of time could be introduced into such analysis in at least one of two ways: one by using cumulative 
or windowed datasets for model comparison; another by reformulating the model to account for time directly (e.g., 
see Hung & Wang, 2012). A more sophisticated approach to skill evolution is the well-known framework called 
Bayesian Knowledge Tracing (BKT; Corbett & Anderson, 1995). BKT models the probability that a Knowledge, 
Skill, and Ability (KSA) will move from unlearned to learned after training. 
 
To address the first two challenges, we combined IRT and BKT into a larger model called a Partially Observable 
Markov Decision Process (POMDP) and used it to represent team training. With a POMDP, we can assess a trainee’s 
skill level across several skills based on performance history and then select the optimal training for that trainee based 
on the optimal learning path. This model allows us to associate each trainee crew member with a skill state (on each 
skill) and each training item (e.g., mission) along with an applicability or relevance of the item with respect to each 
KSA and a difficulty level. A POMDP model contains the following constructs: 
 

• 𝑆𝑆: a finite set of states. This set is factored into individual components, so that 𝑆𝑆 = 𝛱𝛱(𝑆𝑆𝑘𝑘). Each 𝑆𝑆𝑘𝑘 represents 
a team member’s state in a single KSA. For each 𝑠𝑠𝑘𝑘 ∈ 𝑆𝑆𝑘𝑘, 𝑠𝑠𝑘𝑘 ∈ (0, |𝑚𝑚𝑚𝑚𝑚𝑚|), where 𝑠𝑠𝑘𝑘 represents a trainee’s 
skill level on that KSA, and max represents the maximum possible skill level. Thus, by the above description, 
member 𝑠𝑠 ∈ 𝑆𝑆 can be described by a vector < 𝑠𝑠1, 𝑠𝑠2, . . 𝑠𝑠𝑘𝑘 >. Many KSAs may apply to an individual trainee; 
many individual trainees may have the same crew KSA. To specify this relationship more clearly, we can 
optionally specify:  

o The set of crew members 𝐼𝐼 = {𝐼𝐼1, 𝐼𝐼2, . . 𝐼𝐼{|𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐|}}  
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o A mapping function 𝛬𝛬(𝑆𝑆𝑖𝑖) → 𝑈𝑈,𝑈𝑈 ⊂ 𝐼𝐼 that maps KSA 𝑆𝑆𝑖𝑖 to the crew members that 𝑆𝑆𝑖𝑖applies to. 
o A related mapping function 𝛬𝛬(𝐼𝐼𝑖𝑖) that identifies the KSAs related to crew member i.  

• 𝐴𝐴: a finite set of control actions. Each 𝑎𝑎 ∈ 𝐴𝐴 represents training content. Each member 𝑎𝑎 ∈ 𝐴𝐴 is described as 
a tuple (< 𝑑𝑑1, . .𝑑𝑑𝑘𝑘 >, < 𝑎𝑎𝑎𝑎𝑝𝑝1, . .𝑎𝑎𝑎𝑎𝑝𝑝𝑘𝑘 >) where 𝑑𝑑𝑖𝑖 and 𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖 represent the difficulty and applicability of 
training content 𝑎𝑎 with respect to KSA 𝑖𝑖. 

• 𝑍𝑍: a finite set of observations.  
• 𝑂𝑂(𝑍𝑍 × 𝑆𝑆 × 𝐴𝐴): an observation function for each action. This function is governed by IRT. However, to 

account for multiple skills having different applicabilities, we vectorize a 2-parameter model. 

𝑝𝑝(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) =  
1

1 + 𝑒𝑒∑ 𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖
𝑡𝑡(𝑑𝑑𝑖𝑖

𝑡𝑡− 𝜃𝜃𝑗𝑗
𝑡𝑡)𝑘𝑘

 

 
This model is easily extended to include further parameters, or into a Partial Credit Model (Masters, 1982). 

• 𝜏𝜏(𝑆𝑆 × 𝐴𝐴 × 𝑆𝑆): a state transition function. Define an individual transition function for each 𝑆𝑆𝑖𝑖 using 
applicability and difficulty and the concept of the Zone of Proximal Development (ZPD; Vygotsky 1978). 
The transition probability between state s and state s’ given action a is based on the following principles: 

o The transition probability is proportional to applicability 𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖. 
o The transition probability is inversely proportional to the difference in skill level between s and s’ 

(i.e., smaller jumps in skill are more probable than large jumps). 
o The transition probability is inversely proportional to the difference in the difficulty level of the item 

and the current student skill level. (This enforces ZPD). 
o An equation that summarizes these three principles is below, where 𝑠𝑠𝑖𝑖′ > 𝑠𝑠𝑖𝑖 , 𝑑𝑑 and 𝑠𝑠𝑖𝑖 are always 

positive, 𝜖𝜖 is a positive constant close to zero, and 𝑝𝑝1and 𝑝𝑝2 are model parameters. (In deployed 
applications, these have been set to 𝑝𝑝1 = 2 and 𝑝𝑝2 = 𝑠𝑠{𝑚𝑚𝑚𝑚𝑚𝑚}, the maximum possible skill level.) 
 

𝜏𝜏(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑖𝑖′|𝑎𝑎 =< 𝑑𝑑𝑖𝑖 ,𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖 >) ∝  𝑒𝑒
−�𝑝𝑝1)(�𝑑𝑑−𝑠𝑠𝑖𝑖�+1��𝑠𝑠𝑖𝑖

′−𝑠𝑠𝑖𝑖+1�
(𝑝𝑝2)(𝑎𝑎𝑎𝑎𝑝𝑝𝑖𝑖)+ 𝜖𝜖  

 
• 𝑅𝑅(𝑆𝑆 × 𝐴𝐴): a reward function for each state and action. 
• γ: A discount factor over future time steps.  
• 𝑏𝑏0(𝑆𝑆): An initial distribution that assigns a probability to each state, referred to as a belief state, at time zero. 

 
For the POMDP model, the transition and observation functions depend on values for difficulty and applicability that 
apply to each exercise. To determine these values, we turn to Probabilistic Graphical Models (PGMs) where values 
of unknown variables can be inferred given variables that are known (such as those from mission profiles). Consider 
the PGM illustrated in Figure 2. Rather than estimate Difficulties and Applicabilities exercises directly---a task that 
would otherwise require collaboration among exercise authors, instructors, and data scientists upon the creation of 
each and every exercise---we instead construct reusable relationships between exercise mission metadata and 
Difficulties and Applicabilities. These relationships require specification only once; their values can be derived either 
by a subject matter expert (SME) or by machine learning, from performance data exposed in our bottom-up 
component. 
 

 
Figure 2. A notional Probabilistic Graphical Model (PGM) in which several factors influence a score on a performance 
measure, such as aircrew member skills and assessments of a mission’s difficulty. The Tactic, Technique, and Procedure 
(TTP), weapons loadout, and weather determine which Knowledge, Skills, and Abilities (KSAs) are relevant as well as 
mission difficulty. On the right, Student Skill #1 refers to student level on KSA #1; similarly, Skill #2 refers to KSA #2. 
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Gold-colored variables are latent (hidden), meaning that they are not (and cannot) be observed directly; their relationships 
with the variables to which they connect must be inferred. 

To evaluate whether such a model is effective at capturing nuances in training regime, we synthesized training exercise 
data based on an exercise profile template developed by our SMEs. We created 100 different teams and ran them 
through 20 different exercises each, selected from a corpus of 100 training exercises, each of which trains different 
KSAs (relevant to different team members) at different difficulty levels. Each member of each team was initialized to 
have a skill level of zero (meaning untrained or novice). Trainees could improve their skills after each mission. Mission 
success was determined by the probability of the team passing the exercise based on the difficulty and applicability of 
the KSA and the skill level the trainees. The probabilities associated with team member improvement and mission 
success corresponded to the model specified in Figure 2 and the Observation Function described above. Each of the 
100 exercises in the corpus were labeled with a difficulty level from 0 to 4 (an ordinal level of measurement where 0 
is least difficult, 4 is most difficult). We tested two possible training strategies: one deterministic, the other adaptive. 
The control strategy (deterministic) started at difficulty level 0, and then progressed through the difficulty levels 1, 2, 
3, and 4 on the 5rd, 9th, 13th, and 17th scenarios respectively, selecting a random member from the corpus with that 
difficulty level. In other words, the control strategy would naively increase exercise difficulty as training continued. 
The model-based strategy (adaptive) would assemble information about applicabilities and difficulties, along with a 
running estimate of each team member’s KSA level based on Bayesian inference, and then prescribe an exercise from 
the corpus based on adaptive training logic. The figure below shows the progression of average skill level of the team 
members over the 20 exercises on a scale from 0 to 5 (where 0 means least skill, and 5 means greatest). 
 

 
Figure 3: Comparison of regular scaffolding to an adaptive, model-based approach. Regular scaffolding advances 

exercises in difficulty in deterministic steps. The model-based approach advances exercises adaptively; it considers the 
data, in the form of each team member’s performance, and then selects exercises that are best for the whole team. 

 
As the figure shows, the model-based (adaptive training) strategy produced higher skill levels for every team member 
after the 20 exercises. Thus, the PGM can be used to distinguish the effects of training and highlight opportunities for 
improvement. By this point, the PGM has also learned (or assigned weights or probabilities to) the relationships among 
variables of the model. We can exploit this learning by playing “what-if” analyses---for example, testing the effect of 
a change in type of weather on skill level simply by varying the probability of the different types of weather we 
observe.  
 
Model parameters, such as the relation between TTPs and crew skills and crew skill levels, can and should be estimated 
by human beings, not just automated software. To facilitate human exploration of training data, our bottom-up 
approach focused on “walk-up visualization”, an approach to visual data analytics meant to engage an end-user in 
actively exploring a diverse set of data with a minimum number of interactions. One of the challenges addressed by 
walk-up visualization is “intent explication”, a problem of human-centric computing generally. Because humans 
cannot express what they need to accomplish in mathematical terms, we need to infer a human intent function. Having 
users explore data is a means to learn that function. For example, if a user highlights an item of interest, the computer 
can then make inferences about what other features of the data might be of interest. This approach differs from 
customary exploratory data visualizations in that (a) no subject matter expertise is presumed or required and (b) 
sufficient time does not exist to explore the dataset with a SME’s mindset. It also differs from dashboard visualizations 
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in that it is not designed to help a SME maintain real-time situational awareness (e.g., the health of a network or stock 
portfolio). The use case for walk-up visualization is simply that an end-user needs a quick overview of what might be 
interesting in the data. 
 
One approach to walk-up visualization is embodied in Voder (Srinivasan, Drucker, Endert, & Stasko, 2019), an 
application created by Georgia Tech that presents interesting “data facts” in a tabular dataset. Generally, the 
application precomputes descriptive statistics about a given set of data across all its dimensions and combinations of 
dimensions (such as correlation, density, outliers), ranks these computed statistics by potential interestingness, and 
then displays the ranked list in a human-readable way (with some basic natural language processing, NLP). The ranked 
list may contain data facts such as the following (here, for illustration only, for a dataset about car performance): 

• Most values for Horsepower are in the range 75.0 – 125.0 
• Items with Cylinders:6 exhibit a moderate correlation between Acceleration and Weight 
• Europe has highest average Acceleration 

Horsepower, Cylinders, Acceleration, Weight, and Europe are variables in the dataset. Horsepower is treated as an 
interval level of measurement; Cylinders, ordinal. Figure 3 shows how these data facts appear in a prototype of the 
system. In the workflow, the end-user is presented with a precomputed list of data facts; the user may click on any 
particular fact of interest, then drill down for more detail. The system then displays a visualization of the data fact and 
may suggest alternative but related visualizations or data facts to the one selected by the end-user. 
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Figure 4. An instance of, and frames within, our prototype of the Voder user interface, illustrating data facts and select, 
associated visualizations. Features by number: (1) data facts, generated automatically as a pre-processing step, facilitate 
exploration of alternative visualizations; (2) interactive widgets facilitate end-user customization; (3) embellishments (here, 
a color palette) allow highlighting of a data fact within a visualization; and (4) a query interface permits search of data fact 
visualizations. (Source: Srinivasan, Drucker, Endert, & Stasko, 2019, Figure 2) 

Voder is not the end of the story, however; our next step is to use Voder as a front-end for an automated model 
discovery tool called Snowcat (Cashman, et al., 2018), developed by Tufts University. (See Figure 4.) Snowcat does 
not require the user to have detailed knowledge of mathematical models. By design, Snowcat can handle various types 
of data (tabular, graph, time series, texts, image, video, audio, and speech) and problems (classification, regression, 
clustering, link prediction, vertex nomination, community detection, graph clustering, graph matching, time series 
forecasting, and collaborative filtering). However, the type of analyses available depend on the problem of interest 
and its supporting data types; how some of these might be accomplished, given mixed data types (e.g., multiple related 
tables rather than a single table) are matters of ongoing research. For example, whereas classification, regression, and 
clustering can accommodate any data type, generally, graph matching requires graph data, and time series forecasting 
requires time series data. While Snowcat can build data models of its own, its use in the present context is meant to 
drive understanding of the underlying data and to help explicate and improve the PGM. 
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Figure 5. Conceptual architecture of a visual analytics system. Voder (Srinivasan, et al., 2019) provides a visual front-end 
to data ingested, analyzed, and possibly modeled by Snowcat (Cashman, et al., 2018).  

 
 
DISCUSSION 
 
What are the requirements and risks of our proposed approach? At least four emerge: the audience; model 
development; model update; and the forms of input. First, we have proposed two separate but complementary pieces 
of a puzzle, each with their own interfaces and audiences. For example, the output of the PGM (the prescriptive 
approach) is likely to be of interest to higher echelons in an organization, because the model itself provides a unified 
view in helping explicate a complex and changing landscape; insights gained from the model could lead to 
interventions requiring decision-making at high levels. Complementarily, the outcomes from exploratory analysis (the 
descriptive approach) could help explain PGM output as well as highlight idiosyncrasies otherwise marginalized out 
of the model. Thus, the top-down and bottom-up approaches serve two different audiences, suggesting that thought is 
required about the roles and needs of end-users of a system that incorporates these approaches.  
 
Second, development of the PGM will require domain expertise---specifically, the input of those who have knowledge 
of, or insights about, the system under study; this expertise does not inure with casual observation. This is only the 
first of two challenges, however; the second is in finding the proper subdivision of the problem and the level of 
abstraction needed to characterize the problem mathematically. For example, takeoff and landing are critical skills for 
aviation, but they may not be particularly relevant for warfighting. Similarly, a low-level task such as pulling back on 
the throttle is not likely to be useful or tractable in a mathematical model with potentially hundreds of variables---
perhaps better to concentrate on the goal of certain tasks, such as maneuvering away from heat-seeking missiles. 
 
Third, how frequently the PGM is to be updated remains an open question. For example, a model too out-of-sync with 
reality may imperil decision-making; but a model updated with each observation may imperil our ability to test our 
assumptions (about model fit). Introducing time as a variable in the model is one way to account for change over time; 
creating snapshots of the PGM is another, albeit a less flexible and arguably less robust technique long-term. 
 
Fourth, our descriptive approach currently relies on tabular data, due in part to conceptual and technical hurdles in 
representation. For example, the methodology for allowing an end-user to manipulate data in the form of graphs (with 
vertices and edges), geospatial entities, or time series is not yet clear. 
 
How much will our approach cost? The cost of our proposed approach is largely a function of the time and effort 
needed to understand the target domain, and to build, test, and evaluate the PGM. Our bottom-up approach is a 
software development effort, in large part. However, once that software is built, it can be applied in any domain and 
serve to bootstrap PGM development; in other words, the software’s utility will be immediate. 
 
How long will development of our approach take? Following from the previous response, the bottom-up (descriptive) 
approach is likely a relatively short-order (near-term) endeavor. Once the framework is in place, the system could be 
used to develop intuition about the data or to inform prescriptive model-building. The top-down (prescriptive) 
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approach is a longer-term endeavor, because it requires access to data and thoughtful construction of relationships 
among model variables. 
 
What are the mid-term and final exams to check for success? Presently, given the complexity of the system under 
study, the training of P-8A aircrew, a successful mid-term goal for our prescriptive approach would be the 
characterization and modeling of a single task for one or more aircrew members. (This requires definition of latent 
variables representing knowledge, skill, ability, applicability, and difficulty for the task as well as definition of the 
observed variables that affect performance on the task.) The final exam would be to train and then test the model with 
data (real or synthesized) to characterize and explain the effectiveness of the training regime that the model defines. 
The success of our descriptive approach will be the build-out of Voder for tabular data, secondarily for other forms of 
input (such as graphical and time-series data). The final hurdle will be the integration of Voder and Snowcat, which 
will add machine learning capability to the suite of exploratory tools. 
 
 
CONCLUSION 
 
Our holistic approach to comprehending and analyzing big data in a domain of interest, here adaptive training, requires 
the interplay of perspectives generally considered incompatible: those driven by a high-level (macro) view of the 
world, and those by a low-level (micro) view. While we treat these as separate components, each informs the other, 
and true understanding is not possible with one alone. Our top-down (prescriptive) component ensures the resilience 
and validity of trend analysis over time and across multiple organizations despite changes to measurement 
requirements. We achieve this result by separating measures and assessments and then exploiting the relationship 
between them. Our bottom-up (descriptive) component encourages data understanding by facilitating end-user 
exploration of the data itself. Highlighting features of data inputs and relationships among those inputs using 
descriptive statistics is a first step; automated model building, a future step. We intend that both will help in explicating 
surprising outcomes obtained from the top-down model, lead to improvements in that model, and promote 
transparency of a kind that encourages end-user trust and involvement in the process---a recognition that here, as in 
life itself, most things of enduring value are never fully-formed. 
 
A grand opportunity exists to support military decision-making with data analytics. Tactically relevant aviation 
activity, both live and simulated, is driven by an ever-increasing corpus of revelatory data. These data, exploited by 
the proper analytics, can deliver inferences about the effects of changes to common, or overlapping TTPs and 
qualification; they can support predictions about future changes to such effects and ultimately help us to better 
understand force proficiency. Getting smart about (a) selecting, prioritizing, and organizing data for decision-making 
and (b) identifying and checking our related assumptions are prerequisites for developing such capabilities. 
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