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ABSTRACT 

 

The National Aeronautics and Space Administration (NASA) is conducting research into the utilization of real-time 

human characterization models for the prediction and mitigation of flight crew Spatial Disorientation (SD) through 

customized alerting solutions. Despite rapidly evolving flight deck technologies over the past fifty years, reported 

occurrences of flight crew SD have not decreased. 

Under the Technologies for Aircraft State Awareness sub-project, NASA researchers have partnered with experts in 

the field of flight crew SD research from academia and private industry to develop a human software model for the 

real-time prediction of flight crew SD. Using a combination of a human-vestibular system model, aircraft dynamics, 

and physiological sensors, a characterization  model was developed to estimate the discrepancy between perceived 

aircraft state (via eye tracking and other devices) for comparison against state data from the avionics system in order 

to detect flight crew SD.  

The Cost Effective Devices for Alerting Research (CEDAR) study seeks to build upon this work using the human 

SD software model to trigger salient alerting solutions which have been customized to meet the current attentional 

demands of the flight crew. This research is intended to develop a proof-of-concept for real-time SD mitigation 

which could eventually be utilized to improve safety in future air transport operations. This paper will discuss the 

details of how the proposed system will function, including the current state of this research and directions for future 

work. 
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INTRODUCTION 

 

NASA is conducting research into technologies which have the potential to reduce pilot Spatial Disorientation (SD). 

While flight deck technology has advanced rapidly over the past fifty years, the reported occurrences of flight crew 

SD have not decreased. This research effort has been named CEDAR (Cost-Effective Devices for Alerting Research), 

and is focused on the identification and development of low cost, user-centered alerting solutions for the purpose of 

mitigating the occurrence of pilot SD. 

 

Spatial disorientation has been defined as “an erroneous sense of one’s position and motion relative to the plane of the 

earth’s surface”.  This erroneous sense stems from the “incorrect perception in magnitude/direction of any of the 

aircraft control and performance flight parameters” (Gillingham, 1992). Control parameters under this definition refer 

to aircraft attitude and engine power parameters, while performance parameters refer to vertical speed, altimeter, and 

heading. This definition is broad enough to encompass energy situation awareness: “the ability to know and control 

the complex combination of the aircraft’s airspeed and speed trend, altitude and vertical speed, configuration, and 

thrust” (Jacobson, 2010) as the sources of information relevant to both SD and loss of energy state awareness (LESA) 

phenomenon are common to both. 

 

The research activities summarized here have been motivated by the observation that the incidence of loss of control 

events (LOC) stemming from SD and LESA appear to be increasing, even as the overall safety of Part 121 and Part 

25 operations continues to improve. Research indicates that spatial disorientation and loss of energy situational 

awareness account for 32% and 19%, respectively, of 34 LOC accidents over the last decade (Bateman, 2010). These 

statistics (see Figure 1) are a matter of rising concern as commercial air traffic growth shows little sign of slowing, 

and accident data suggests that newer airplanes are also vulnerable to these problems. 
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Figure 1. Causes of aviation fatalities in commercial jet fleet (Boeing, 2015) 

 

In light of these statistics, the importance of prognostic analyses for identifying future risks for loss of control 

precursors such as SD is being widely recognized in the aviation safety community. For example, Belcastro and Foster 

(2010) have raised the importance of identifying currently unforeseen risks for loss of control incidents that may 

materialize in the context of NextGen operations risks whose causal bases may not be represented in prior accidents. 

Unfortunately, the latest generation of air transport and business aircraft with display and control features that have 

not been scrutinized extensively by the aviation research community for vulnerability to SD, additionally these aircraft 

lack an accident and incident record from which to draw meaningful inferences about SD vulnerability. 

 

Gibb, Ercoline & Scharff (2011) present a review of the accidents and incidents related to pilots’ SD as foundation 

for renewed call to action. They cite a 2002 keynote address at the “Research and Technology Organization, Human 

Factors and Medicine Symposium on Spatial Disorientation in Military Vehicles: Causes, Consequences and Cures” 

that emphasized the continued role of SD in aviation accidents and incidents for 50 years; underscoring that, despite 

improved understanding of its etiology and enhanced pilot displays, SD has killed pilots since 1913 and continues to 

do so. Gibb et al., (2011) state that, despite the fact that today’s pilots have instruments/visual displays to help maintain 

orientation, it is apparent that aviation’s extreme demands on pilots exceed human sensory-perceptual-cognitive 

capabilities, even with new technology. In fact, they observed, at times the new technology plays a contributing factor 

in SD. SD-related mishaps still occur, and unfortunately, SD is often not formally recognized as a contributing factor 

in mishaps, and accidents are differentially classified otherwise, e.g., “visual illusion” or “loss of control” (LOC). 

Gibb presented an assessment of visual spatial disorientation at 2010 annual Aerospace Medical Association 

conference and cited 25 studies dating from 1947 that illustrated SD’s role in mishaps as well as surveys of pilots 

anonymously sharing their SD experiences. Most striking across all the data from various countries and researchers 

was the consistency over the years — SD rates are not decreasing. 

 

In December 2014, as a result of analyzing 18 loss-of-control events, the Commercial Aviation Safety Team (CAST) 

recommended research into flight deck technologies that have potential to mitigate the problems and contributing 

factors that lead to flight crew loss of airplane state awareness (ASA) and conditions likely to produce spatial 

disorientation. The aviation community (government, industry and academia) has been charged with conducting 

research in the following areas: 

 

1. Assess the relative benefits associated with various methods of displaying angle-of-attack on the flight deck. 
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2. Develop and refine algorithms and display strategies to provide control guidance for recovery from approach-to-

stall or stall. 

3. Develop and refine systems that predict the future aircraft energy state and/or autoflight configuration if the current 

course of action is continued and provide appropriate alerting. 

4. Cost-effective, user-centered flight deck alerting systems to alert flight crews, especially for the two conditions that 

produced spatial disorientation in the ASA event data set (sub-threshold rolls and the somatogravic illusion). 

 

They suggest this research should raise the technology readiness level (TRL) of these features to a level that enables 

cost-effective implementation and certification of these technologies. This work supports the NASA Airspace 

Operations and Safety Program (AOSP), System-Wide Safety (SWS) Project, Technologies for Aircraft State 

Awareness (TASA) Sub-Project in support of CAST’s Safety Enhancement #207, Outcome #4. 

 

The TASA Cost-Effective Devices for Alerting Research (CEDAR) effort is tasked with identifying safety 

enhancements capable of providing salient alerting solutions to pilots and flight crew operating aircraft while in a state 

of SD. This research will give special consideration to combating two types of SD illusions in particular; somatogravic 

illusions and the sub-threshold roll illusion. Somatogravic illusions are defined as illusions in which “there is a false 

perception of attitude on exposure to a force vector that differs in direction and/or magnitude from the normal 

gravitational force” (Benson, 1999). The sub-threshold roll illusion (aka the “leans”) is a false sensation of roll attitude 

(Benson 1999). A prolonged roll can create the illusion that the aircraft’s wings are level. In both of these SD illusions, 

it is when the pilot attempts to correct the aircraft’s attitude that problems arise, sometimes with lethal consequences. 

 

MODEL 

 

NASA has partnered with experts in the field of flight deck SD to conduct research into the utilization of real-time 

human characterization models for the prediction and mitigation of pilot SD through customized alerting solutions. 

Honeywell, Inc., working in collaboration with researchers from the Georgia Institute of Technology, implemented 

an overarching model that integrates models of the vestibular system, instrument scanning behaviors, and aircraft 

dynamics to estimate a pilot’s sense for aircraft orientation and dynamics. The Model-Based Observer is a 

computational model developed under a previous NASA-funded effort (led by Dr. Ellis), which serves as the basis for 

the Predictive Alerting (PA) concept described later (Pritchett et al., 2014). NASA’s CEDAR effort sought to modify 

the MBO to incorporate it with an alerting capability in order to create a Predictive Alerting Model (see Figure 2). 

 

 
Figure 2. Predictive Alerting Model (PAM) 
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Humans rely primarily upon two sensory systems to determine their current orientation and motion: the visual and the 

vestibular. Human estimation of aircraft state is grossly compromised when visual cues are deficient. Under these 

conditions a pilot must rely on a combination of cues provided by the vestibular system, and an internal representation 

of aircraft state. To effectively infer human operator perception in real-time, a detailed model of the human vestibular 

system is necessary, as is a model that represents the pilot’s internal representation of aircraft dynamics. Located in 

the inner ear, the vestibular system perceives self-motion and is a primary input to postural control (Angelaki, et al., 

2008). Over the past century, aviation’s three dimensional maneuvers have subjected the human vestibular system to 

forces which it was not evolved to accurately interpret (Gillingham, 1966). Prolonged maneuvers, constantly changing 

accelerations, and a wide range of maneuver rates can cause illusions and, thus, misinterpretation of the actual 

orientation (Previc & Ercoline, 2004). The vestibular models employed for this effort incorporated elements from a 

large body of research in this area (Previc & Ercoline, 2004; Merfeld et al, 1990, 1993, 2002; Grant & Best, 1986). 

 

The outputs of the vestibular system are mediated by a pilot’s internal estimate of the state of the aircraft under his or 

her control. Hence, a model of the best-possible pilot expectation, under varying levels of deficits in visual cues, needs 

to complement a model of the vestibular system with an “internal simulation” of the aircraft dynamics, i.e., is a Model-

Based Observer (MBO). The estimated state within the MBO is propagated with the help of an accurate linear model 

of the aircraft dynamics, and is updated continuously by the vestibular system model and at discrete intervals by visual 

sampling. To optimally combine both continuous-time and discrete-time measures, the MBO employs a Hybrid 

Extended Kalman Filter design. 

 

 
Figure 3. The MBO - Model of aircraft dynamics and pilot's best possible expectations 
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The MBO is tightly coupled to an aircraft simulation that describes the dynamics of the system (see Figure 3). The 

solid line signal paths illustrate continuous-time signals while the dashed lines illustrate discrete-time signals. The 

MBO assumes a model of the aircraft dynamics as shown in label (1) propagates the aircraft state vector (x) with 

additive process noise (w), weighted by (G), that has zero mean and a covariance of (Q). The measured or observed 

state variables, label (2), account for the measurement errors (v). The continuous path carries the continuous signals 

coming from the vestibular system measurements (yc). In the continuous case, measurement error is the vestibular 

sensors error denoted by (vc). The discrete path carries the discrete signals due to the discrete visual measurements 

(yd). In the discrete case, measurement error comprises the errors due to aircraft’s sensor error, errors due to the design 

of the flight instrument, and errors due to pilot’s perception of the scanned instrument. Label (3) is the “internal 

simulation” of the aircraft dynamics maintained by the pilot (xest) as simulated with a linearized model of the aircraft. 

The measurement values that would be expected from xest, indicated as yest, are compared with the actual 

measurements y, and the discrepancy, shown in label (4), is weighted by the Observer gain to correct xest. 

 

When the MBO is run off-line for computational analysis, the visual scan model represents hypothesized pilot scans 

of the flight instruments; when run in real-time, the visual scan model can instead be informed by an eye tracker when 

a pilot visually samples specific flight instruments. The visual scan model provides a set of values to the MBO 

representing visual samples of any flight instrument: yD, the measurement made by the visual sample; RD, the 

assumed variance in additive measurement error ε ~N(0,RD) added to yD; and yD’s immediate linear relationship to 

state as represented by the measurement matrix CD. 

 

The instrument scan patterns or behaviors are modeled by visual-scanning actions. Each visual-scanning action is a 

discrete measurement of the aircraft’s state. These instrument-scanning actions may occur synchronously or 

asynchronously, and at high or low frequencies. 

 

For the purpose of this model, instrument-scanning behaviors are classified into four categories: 

 

1. T Scan: The ideal T scan will represent the optimal instrument scan a pilot can implement: a continuous, high 

frequency scan of the primary flight instruments. This scan pattern may be degraded by occurring at lower frequencies.  

2. Omission: The first varied scan will implement a T scan at a high frequency, but omits one instrument from the T 

scan throughout a particular scenario (e.g., pilot fails to monitor the airspeed indicator, or the airspeed indicator has 

failed). This type of scan will have four variants, excluding a different instrument from the T scan each time. Again, 

the frequency of each scan can be varied.  

3. Emphasis: The second varied scan will consider scanning three flight instruments at a low frequency while scanning 

the remaining instrument at a high frequency (i.e., putting an emphasis on this particular instrument). Again this will 

have four variants with each having a different ‘high frequency’ instrument. Here both the ‘high’ and ‘low’ frequencies 

can be varied.  

4. Distraction: The third instrument-scanning behavior category, distraction, will represent a distinct period where the 

pilot stops monitoring all instruments. Outside of this period, the pilot will apply a high-frequency T scan. In this case, 

the distraction period will start just before the onset of a key maneuver and its duration will be varied.  

 

Figure 4 illustrates the relationship between the visual information presented to the pilot (by flight instrument), the 

estimates of the vestibular model (consisting of SCC and Otolith sub-models), and the elements of aircraft state 

estimates. 
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Figure 4. Relationship between visual information, vestibular system estimates, and elements of aircraft state 

estimate 

 

The model described above can provide the basis for estimating discrepancies between pilot perception of aircraft 

orientation and dynamics, and aircraft state. The model will likely show little discrepancy between expectations and 

reality when instruments are being scanned appropriately, particularly when the aircraft is in a stable state. In the 

absence of appropriate scanning behaviors, we would expect model estimate of discrepancy to be more pronounced, 

particularly when the aircraft is actively maneuvering. Figure 5 illustrates estimates of pilot expectation and aircraft 

state as a function of scanning behaviors. 

 

 
Figure 5. Roll rate and its expectation during a sub--threshold bank maneuver (Distraction from 3 to 15 

seconds - No visual scanning at beginning of maneuver) 
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PREDICTIVE ALERTING MODEL 

 

Through the TASA CEDAR effort, the models described above were modified and incorporated into an overarching 

model developed to alert pilots and flight crew who may be operating aircraft in a state of spatial disorientation (as 

shown in Figure 2). The Predictive Alerting Model (or PAM) has the potential to accurately predict and alert pilots 

through a powerful combination of passive sensors (i.e. eye tracking), predictive human characterization modeling, 

and adaptive alerting. 

 

The PAM could one day be applied to modern commercial air transport aircraft, becoming fully integrated with the 

avionics system. The model is capable of running continuously in the background, ready to provide flight crew with 

real-time alerts when a high likelihood of SD is predicted. The fully integrated nature of the model presents several 

interesting opportunities for highly customizable flight deck alerting. 

 

The alerting thresholds within the model can be customized based on a number of system parameters to create adaptive 

alerting solutions. For example, the alerting threshold for an operator who is manually controlling the aircraft could 

be lower than that for an operator who is utilizing automated controls (i.e. autopilot), due to the increased likelihood 

of a LOC event during manual control. Under automated control, a higher alerting threshold can be used to reduce the 

occurrence of nuisance alerts, or mute SD alerts altogether. 

 

Figure 6 illustrates how the PAM may be used to mitigate SD illusions (specifically, a case of somatogravic illusion). 

Once the discrepancy between the operator’s expectations and reality exceeded a pre-determined threshold, an alert 

was triggered. This alert effectively notified the operator to the discrepancy, who then re-established the visual scan 

pattern and regained situational awareness. In addition to eye tracking data, the PAM can also use data from the 

avionics system to measure the time at which an operator has become aware of the SD illusion and made appropriate 

corrections. For example, a course correction made using the Flight Mode Control (FMC) panel or manual control 

inputs could be used as a secondary means for terminating a SD alert. 

 

 
Figure 6. Somatogravic illusion: pitch-up sensation - Pitch angle and its expectation during and acceleration 

(no pitch) maneuver (Distraction from 15-30 sec). 

 

Adaptive alerting enables the PAM to provide the most salient forms of alerting to the operator for a given situation. 

The advent of glass cockpit display systems makes it possible to place visual alerts in many more locations than 

previous technologies allowed. This new technology, when paired with a combination of real-time eye tracking data, 
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the model of pilot perception described above, and estimates of aircraft state and trend at a given moment can serve 

as the basis for estimating the likelihood of pilot disorientation and offer timely and context specific recovery cues. 

For example a gradual steep turn that accompanies appropriate visual scanning behaviors would lead to the model of 

pilot perception and reality to overlap – allowing the system to defer alerts to the default bank limit. However, in the 

absence of appropriate scanning behavior, the real-time estimate of aircraft state will diverge from the actual state of 

the aircraft. A threshold based on the error between the model and reality can allow earlier alerting – well ahead of an 

unsafe attitude. Modern glass cockpits enable the placement of highly effective visual alerts within the operator’s 

primary field of view and supplement these with aural warnings. For example, if a pilot becomes distracted while 

focusing on an auxiliary display, the system (informed by eye tracking data) can adapt to place the alert on the auxiliary 

display for increased saliency. 

 

Adaptive alerting also allows for varying levels of alert intensity and duration, depending upon the situation. If eye 

tracking data indicates a distracted pilot who does not respond to routine aural and visual alerts, the intensity of such 

alerts can be increased (i.e. flashing, volume) or the duration can be extended until the pilot has been alerted. Alerting 

modalities can also be varied in order to improve saliency, by customizing the form of alert to a given situation.  

 

The fully integrated nature of the system makes it possible to monitor pilots’ sensory channels for saturation and target 

an alerting modality which is capable of being received and interpreted by the pilot. For example, if the pilot’s aural 

sensory channel is already saturated by heavy radio communications, an alternate alerting modality may be selected 

(i.e. visual, haptic, etc.) to increase saliency. 

 

FUTURE WORK 

 

An alerting prototype was developed and integrated into NASA and Honeywell simulators as a proof of concept for 

real-time human modeling for SD detection and mitigation. This prototype effectively illustrates the usefulness of 

model-based adaptive alerting within the context of commercial air carrier operations. The model will require more 

development before it is able to undergo the verification and validation testing necessary in order to transition from 

concept prototype into a functional flight deck for real-time applications. Additional studies aimed at refining the 

concept through focus groups, human-in-the-loop experiments, and flight testing must be performed in order to 

eventually field the system. 

 

While eye tracking was incorporated into this initial prototype, the model is capable of ingesting and interpreting data 

from multiple physiological monitoring sources simultaneously to more accurately characterize the human operator. 

Incorporation of these physiological data sources will require research into how best to utilize this new data, in addition 

to requiring updates to the model. 

 

CONCLUSION 

 

The research effort detailed herein is intended to serve as a proof of concept for the utilization of human 

characterization models for adaptive alerting and SD mitigation. As previously identified, SD cases are not decreasing, 

which poses a significant risk to aviation safety. Pilots experiencing SD illusions are often incapable of recognizing it 

themselves, which is why the powerful combination of physiological monitoring paired with human model-based 

prediction has the potential to accurately predict and notify pilots before it is too late to ultimately improve the safety 

of flight. 
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