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ABSTRACT 

 
For the last half century, there has been a dramatic increase in the use of modeling and simulation (M&S) applications 
in training and education.  M&S can be leveraged to enhance conventional mechanisms for knowledge retention by 
bridging the gap between classroom theory and real-world application to better enable engaging, experiential 
participation in the learning process.   
 
This paper discusses the technical and experimental design of a game-based simulation environment for an existing 
road vehicle dynamics (RVD) university course.  The basis of the simulation experiment is to provide an environment 
for learners to actively discover the interplay between two key vehicle parameters (i.e., vehicle weight distribution 
and roll-stiffness distribution) while driving upon an oval speedway.  The goal of the learner, in real-time, is to 
optimize these parameters to maximize vehicle performance (i.e., to minimize lap time).  Simultaneously, our 
objective as educators is to observe how simulator-measured experimental performance correlates to self-reported 
tendencies (e.g., driving style; learning style; video gaming preferences) relevant to driving and dynamics education.   
 
Our holistic goal is to determine if and to what degree M&S-based instruction is better suited towards certain types of 
drivers or learners, which might inform how to maximize the effectiveness of the delivery of M&S in future training 
and education curricula.  While the M&S environment and experimental protocol described here is intended primarily 
for education and training, it has extensibility to other applications (e.g., pilots for aircraft), and enables related 
applications in transportation and human factors research.   
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INTRODUCTION AND MOTIVATION 
 
The discipline of Modeling & Simulation (M&S) has long been used as a basis for technical decision making.  
Mathematical computer models can provide a mechanism to explore system behavior in a manner that can be 
prohibitive for real-world application (NSF, 2006).  In recent times, there has been a dramatic increase in the use of 
M&S-based gamification for training to enable active (rather than passive) participation in the learning process.  In 
this manner, M&S can be leveraged to enhance conventional mechanisms for knowledge retention by effectively 
bridging the gap between classroom theory and real-world application.  Refer to Figure 1, which depicts the class 
learning pyramid (Dale, 1969), and which demonstrates the relative success of active teaching methods (e.g., real-
time simulation) over passive, non-participatory learning methods.  An early effort (e.g., Herz and Merz, 1998) 
relevant to the field of Business employed experimental design to determine if economic simulation games support 
the learning process.  Preliminary results indicated that these games support the various stages of learning more 
efficiently than traditional (passive) instruction.  More recent scientific efforts (e.g., Abdulmohsen, 2010) in Health 
Care employed experiential learning, and utilized simulation aides to replicate clinical scenarios to increase medical 
provider competency.  Engineering research (e.g., Hulme et al., 2010) included game-based M&S as a core 
component, and saw the administration of multiple measure types (quantitative, qualitative, self-report, longitudinal) 
to assess trainee performance and knowledge transfer, and to rate instructional preferences.  However, critically 
lacking in these past efforts was a mechanism to observe correlations between performance (i.e., as measured by the 
simulation applications), and self-rated real-world proficiency. 
 

  
Figure 1 – Learning Pyramid Figure 2 – Stability Control (speed vs. heading) 

 

In this paper, we discuss the design and integration of a game-based simulation environment into an existing road 
vehicle dynamics (RVD) university course curriculum.  The basis of our experiment is to provide an environment for 
learners to actively discover the interplay between two key vehicle parameters (vehicle weight distribution, and roll-
stiffness distribution) while driving at elevated speeds upon an oval speedway.  The goal of the learner, in real-time, 
is to optimize these parameters to maximize vehicle performance.  Simultaneously, our objective as educators is to 
better determine if simulator-measured experimental performance correlates to relevant self-reported tendencies: 1) 
driving style preferences, 2) learning style preferences, and 3) video gaming preferences.  Using this data, our 
penultimate goal is to determine if M&S-based instruction is better suited towards certain types of drivers or learners, 
which might inform an improved understanding for how to maximize the effectiveness of the delivery of M&S in 
future training and education curricula.  Although our M&S application is geared towards civilian road vehicle 
dynamics education, possible broader impacts of this work include military training (e.g., optimization of pilot flight 
style), and intelligent transportation systems (e.g., human factors assessment and evaluation).  In the next section, we 
detail the emerging nature of our M&S concept, and highlight the innovation of our applied technology. 
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CONCEPT INNOVATION 
 
In this paper, we describe the novel application of M&S in the context of vehicle dynamics education.  The simulation 
training environment that has been developed and deployed allows participants to modify vehicle parameters in real-
time in an attempt to optimize performance.  Specifically, learners will augment properties that influence vehicle 
stability control which will emphasize the critical relationship between vehicle speed and heading (e.g., transitioning 
between straightaway and curved track segments); refer to Figure 2.   
 
The instructional strategies outlined in this work promote advanced learning by leveraging M&S to enable system 
interaction that is not feasible within a traditional (passive) classroom setting, nor practical within a physical “real 
world” training environment.  The instructional features incorporated by the simulator (e.g., preset/reset capability, 
assignment/parameterization of task conditions, real-time performance analysis and monitoring) enhance student 
learning and facilitate instructor interaction (Vincenzi et al., 2008).  Furthermore, by collecting supplementary self-
report data to accompany observed participant simulator performance, our primary aim is to identify training 
mechanisms that will permit improved delivery of M&S content offered within future training curricula.  In the next 
section, we describe the research facilities leveraged for this effort. 
 
RESEARCH FACILITIES 
 
Our high-fidelity motion simulator was leveraged for the research experiments described in this paper.  Refer to 
Figures 3-5.  The primary functional components of the simulator include the following: a 6-DOF electric hexapod 
platform, a two-seat Sedan passenger cabin, a USB racing-themed steering wheel (with buttons and paddle shifters 
that enable vehicle parameter adjustment in real-time, “on the fly”) foot pedals (w/ spring resisted gas and clutch, and 
dual-spring pressure modulation on the brake pedal), and a 2.1 stereo sound system and a full-sized subwoofer.  The 
visual display system features a 16’ diameter, 6’ high, 360-degree surround “Ring screen”, front-projected by a 
sequence of six truss-mounted projectors.  Edge blending and screen warping are accomplished both in software and 
in hardware.  The overall display resolution is 8192 pixels (circumference) x 768 pixels (height). 
 

  
Figure 3 – Display environment Figure 4 - Motion platform 

 
COURSE DESCRIPTION AND RELEVANT THEORY 
 
The simulation environment is incorporated into a technical elective engineering course on automobile vehicle 
dynamics, formally entitled Road Vehicle Dynamics (RVD), an introductory course on the basics of automobile 
motion, stability, and control.  This includes a review of tire performance and modeling, exploration of the elementary 
Bicycle Model of vehicle dynamics, and the development of a more detailed Four-wheel Model (Milliken and 
Milliken, 1995).  Our Four-wheel model is a suitably realistic model of a vehicle as it includes nonlinear tire behavior 
and treats all four wheels individually. Wheel loads are calculated continuously, and vary with vehicle operating 
conditions. These serve as inputs to the tire model, which has load-dependent behavior based on real-world tire data 
collected at Calspan’s Tire Research Facility (TIRF), and modeled using a subset of the non-dimensional tire model 
(Kasprzak et al., 2006). Calculation of the normal load includes both the static wheel load component center-of-gravity 
(CG) location (front-to-rear), and the effects of load transfer while driving. CG height, roll axis height/inclination, and 
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roll stiffness distribution (RSD) (front-to-rear) all contribute to the load transferred (see Figure 6) during lateral and 
longitudinal accelerations.  Inputs to our vehicle models are steer angle and tire (longitudinal) force, the latter of which 
is proportional to the throttle and brake positions.  Outputs include vehicle velocities, accelerations, tire forces, and 
tire operating conditions.  A secondary goal of the course is to apply general engineering skills learned during the first 
three years of the engineering curriculum to the specific field of vehicle dynamics.  This gives students the satisfaction 
of being able to apply their engineering skills to a particular topic, and mimics the process of merging these 
foundational abilities with details of a specific knowledge area - as will be required when entering the workforce.      
 

  
Figure 5 – Simulator controls Figure 6 – Roll Axis and Roll Stiffness 

  
Figure 7 – Oversteer/Understeer Conditions Figure 8 – Front vs. Rear roll stiffness 

 

In the laboratory experiments outlined in this work, participants experiment with two key vehicle parameters within 
the described Four-wheel model.  The first is to determine the influence of weight distribution (i.e., Center-of-Gravity, 
or CG), front-to-rear, on the handling of the vehicle.  A front-heavy vehicle will tend to understeer, while a rear-heavy 
car will tend to oversteer.  The intermediate condition is “neutral steer”, which offers an ideal blend of both 
characteristics.   Refer to Figure 7.  The second is to determine the influence of roll stiffness distribution (RSD), front-
to-rear, on stability and performance.  With a four-wheeled vehicle cornering at such a critical speed: 
 If you have a majority of front roll stiffness (relative to the rear) you will be forcing majority load on the inside 

front tire, which operates less efficiently, and will consume grip faster than the rear.  (Figure 8-green) 
 If you have a majority of rear roll stiffness (relative to the front), you will be forcing majority load on the inside 

rear tire. Here, the inside rear tire is overworked and consumes grip up faster than the front.  (Figure 8-red) 
 
By experimenting with these critical vehicle parameters, learners will gain valuable insight on resulting performance, 
specifically optimal handling characteristics, in real-time, “on the fly”.  The depth of comprehension gained from this 
experiential exposure will be greater than would be achieved through passive instruction alone, and more safe/practical 
than by way of actual field testing (e.g., in a real car, at high speeds on a test track).  In the next section, we describe 
the explicit details of the vehicle dynamics simulation-based RVD experiment. 
 
RVD EXPERIMENT DESCRIPTION 
 
The simulation environment is an oval racetrack called “Spencer Speedway” (modeled after the actual speedway, 
located regionally in Williamson, NY).  Refer to Figures 9 and 10.  This track was introduced to assist vehicle 
dynamics students to better understand how travel speed effects vehicle control.  This course allows drivers to 
experience the delicate balance between throttle (i.e., longitudinal travel speed) and vehicle heading (i.e., degree of 
turning).  By driving multiple laps in succession, young learners can repeatedly practice behavior at the track 
transitions (i.e., entry/exit) which are the most difficult segment to master.  The simulator has been programmed to 
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capture data for each excursion: (x,y) position, vehicle speed (m.p.h.), and forces/accelerations on the vehicle (e.g., 
front and rear tire forces as the vehicle transitions from straightaway to turning segments).  
 

  
Figure 9 – Spencer Speedway (virtual, POV) Figure 10 – Spencer Speedway (actual, ISO view) 

 

Our experimental protocol is presented in Table 1.  Each session begins with a number of pre-surveys and self-report 
questionnaires issued in advance of the simulator exercises.  These include the following: 
 The Jerome Driving Questionnaire (JDQ) (Jerome and Segal, 2012), a visual analog scale that provides self-report 

and collateral data related to driving history and style.  Preliminary results indicate that the JDQ has a four factor 
structure (i.e., attention, impulsivity, alertness and emotional) and has demonstrated to have predictive validity in 
assessing risk of future driving problems in young drivers. 

 The Driver Behavior Questionnaire (DBQ) (Parker et al., 1995) provides a distinction between different driving 
conduct by investigating a three-fold typology of negative driving behaviors: 1) lapses, are absent-minded 
behaviors with consequences mainly for the perpetrator; 2) errors, are typically failures of observation that may 
be hazardous to others; 3) violations, involve deliberate infraction of safe driving practice. 

 The Learning Styles Inventory (LSI) (Bixler, 2016) is implemented to evaluate how a subject prefers to learn or 
process information.  The three substyle of learning are visual, auditory, and tactile.  This knowledge can enable 
educators to develop strategies to enhance and optimize learning potential.  
 

Table 1 – Experimental Protocol 
Activity Details (% front CG/% front 

RSD), Duration 
Pre-surveys (3) n/a, 15 minutes 

Drive 
#1/Acclimation 

60/60, 3 minutes 

Drive #2 60/51, 3 minutes 
Drive #3 User adjustable (60/60 baseline), 

5 minutes 
(break) n/a, 5 minutes 

Drive #4 51/60, 3 minutes 
Drive #5 User adjustable (51/60 baseline), 

5 minutes 
Post-surveys (2) n/a, 5 minutes 

Total: 45 minutes (approximate) 
 

Table 2 – Basic cohort details 
Subject # Drove in class? Classification 

1 No RVD Student 
2 Yes (driver) RVD Student 
3 No RVD Student 
4 No RVD Student 
5 No RVD Student 
6 Yes (driver) RVD Student 
7 No RVD Student 
8 Yes (driver) RVD Student 
9 No Non-RVD Student 

10 Yes (passenger) RVD Student 
11 No Expert 
12 No Expert 

 

 

Once these surveys are completed, the simulation drives are then endeavored.  Instructions for each drive are simple: 
drive counterclockwise around the oval speedway as rapidly as you feel comfortable.  The objective is to identify 
vehicle parameters that enable the fastest legal lap.  A legal lap is defined whereby the driver’s simulation vehicle 
remains on the track for the entire duration of the lap, and that no perimeter cones are struck during the lap.  The first 
drive takes place on a “stable” vehicle configuration, with both the vehicle center-of-gravity (CG) and roll-stiffness 
distribution (RSD) parameters leaning towards the front of the vehicle (i.e., 60% front).  This easily drivable vehicle 
also serves as an “acclimation” to the simulator.  The second drive maintains the vehicle CG (% front) at 60, but 
reduces the stability of the vehicle by reducing RSD (% front) to 51.  Each of the first two drives is three minutes in 
duration, which should be enough time for a minimum of 4 completed track laps.  The third experimental drive expands 
the simulation time to five minutes.  Here, the baseline CG/RSD is 60/60, just like the first vehicle, but during this 
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drive, the RSD (% front) is user-adjustable during the drive, in real-time.  Theoretically, this allows the driver to adjust 
and fine-tune that parameter to their preference, while maintaining a vehicle with a 60% front CG.  After the third 
drive, the driver is given a five-minute break.  Thereafter, the fourth drive takes place, which gives the driver three 
minutes to encounter a vehicle with a reduced CG (% front) of 51, and a RSD (% front) of 60.  Finally, the fifth drive 
is five minutes in duration, and begins with a baseline 51/60 CG/RSD vehicle just like the previous drive, but allows 
the CG (% front) for real-time adjustment and fine-tuning during the drive. After all five experimental drives are 
completed, the participant is issued two post-surveys: 
1) A brief questionnaire (i.e., six Likert-style questions) regarding use of video games for entertainment, and 

opinions regarding if gaming and simulation should be utilized (with greater prevalence) in serious-minded 
educational contexts.  Our survey was largely inspired by Magnussen et al. (2014), who analyzed the feasibility 
of using gaming as a platform for student participation in scientific research. 

2) The Motion Sickness Assessment Questionnaire (MSAQ) (Gianaros et al., 2010), queries how drivers feels to 
assess if, and to what degree, our simulator had a negative impact on participants (e.g., nausea, dizziness, 
headache).  There are 16 questions total, each on a 10-point Likert scale, with each addressing one of four possible 
symptom types (i.e., Gastrointestinal; Central; Peripheral; Sopite-related).  MSAQ rating results in scores for each 
of these four categories, as well as an “overall” sickness score.   

 
Our cohort details are presented in Table 2.  There were 12 participants in all, including ten students and two “expert” 
drivers.  Nine of the ten students participated upon an abbreviated version of the experiment within the RVD class, 
and one additional student volunteered to perform the experiment having not been part of the RVD class.  Table 2 also 
denotes if each participant drove (or served as passenger) on the simulator as a portion of the RVD class.  (i.e., Due 
to the class size, not all students were able to serve as driver or passenger as a part of the class exercise, which is 
partially why these “extended” simulator sessions were offered after hours).  The “experts” were the course instructor 
and the simulator operator, both of whom served as the primary designers/modelers of the simulation environment 
itself.  In the next section, we present the results of our experiments. 
 
RESULTS AND ANALYSES 
 
We decompose this presentation into three primary subsections:  a) quantitative results from our simulator-printed 
score sheets, b) self-report summaries from the pre- and post-surveys, and finally, c) correlations identified between 
these various data types.  For these analyses, Microsoft Excel and the Statistical Package for Social Sciences (SPSS) 
were leveraged. 
 

  
Figure 11 – Lap Efficiency Figure 12 – Optimal Drives 

 

Quantitative (Simulator) Data 
Insightful driver performance data was captured in real-time by the simulator itself, for each driver, and for each of 
the five drive conditions.  We must first make note of two exceptions that have an impact on the results reported.  
First, Driver #7 only completed the first three drive conditions due to poor/timid performance, and operator-suspected 
simulator adaptation syndrome (Gálvez-García, 2015).  Therefore, this driver has no data for the fourth and fifth drive 
conditions.  Second, Driver #8 completed a total of six drives due to a simulator malfunction.  (i.e., Drive condition 
#1 was repeated two times).  All six datasets were included in this participants driving trends noted below.   
 
Figure 11 presents a plot of total laps and legal laps (i.e., no cones struck) for each participant across all five drives.  
The vertical axis along the right side of the plot offers an “efficiency” metric (i.e., legal laps/total laps) for all drivers 
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in the cohort.  In other words, a student who drove favorably in the simulator would have a large total lap count (i.e., 
they drove rapidly, with small lap times) and they would also have a high efficiency metric (i.e., they drove with 
control/discipline).  As a metric for comparison, averages, for the entire cohort, were as follows: Total Laps: 29.1, 
Legal Laps: 22.6, Efficiency: 77.5%.  The observed tendency is that drivers who attempted more laps placed more 
value in obtaining a “top speed” lap while willing to sacrifice some degree of accuracy (efficiency) in doing so.  For 
example, Driver #2 completed 35 laps, the second highest in the cohort.  Their efficiency was 65.7%, which was the 
second lowest in the cohort.  Conversely, Driver #1 only drove total 27 laps (lower than the cohort average), but at an 
efficiency of 88.9%, which was well above the cohort average.  An obvious exception to this generality is Driver #8, 
who drove more laps (36) at a higher efficiency (94.4%) than all other drivers in the cohort.  However, note that this 
driver had one extra dataset, as noted previously. 
 
Figure 12 presents a dual axis plot that shows the fastest lap driven by each participant (left-vertical axis), and the 
drive condition (ranging from 1-5; see Table 1) during which the optimal lap was achieved (right-vertical axis).  Both 
of the “expert” drivers (#11 and #12) had optimal lap times that were below 29 seconds, as did cohort Driver #2.  
Simultaneously, the expert drivers were able to achieve driving efficiencies that were in the vicinity of (76.5%) or 
above (88.2%) the cohort average, respectively.  Not surprisingly, Driver #2’s efficiency (65.7%), as seen in Figure 
11, was well below the cohort average.  It is noteworthy that eight of the twelve cohort drivers achieved their optimal 
lap during drive conditions #3 or #5, where: a) drivers had a full five minutes to drive (instead of just three), and b) 
real-time parameter adjustment was possible during the drive.  A notable exception was Driver #7, whose optimal 
drive time of 38.22 sec was much slower than the cohort average optimal time (calculated as 30.5 sec).  This driver 
was the only participant who favored drive condition #1, which is a very stable, very understeer vehicle.  It is therefore 
not surprising that this driver was excessively timid and completed, by far, the fewest number of total laps across all 
drives (ten – refer to Figure 11).  Note that this driver had two fewer datasets, as described previously. 
  

  
Figure 13 – Cone strikes and spinouts Figure 14 – Optimal lap times across (5) drive conditions 

 

Figure 13 displays the number of cone strikes and spinouts, per driver, normalized per mile driven, across all five 
experimental trials.  (Note that due to their comparatively lower values, exact values are displayed for the “spinouts” 
data series.  Likewise, the cohort averages for normalized cone strikes and spinouts were 4.23 and 0.48, respectively).  
Obviously, an ideal experimental drive would exhibit low values for both parameters; a cone strike negates the 
possibility of a “legal” lap time, and a spinout causes a time delay that obviates the possibility of an “optimal” lap, 
until the next lap go-round.  Therefore, this plot presents some measure of the “accuracy” of each driver.  Comparing 
Figure 13 to Figures 11-12, a few general observations can be made.  First, simulator drivers who achieved a high 
degree of efficiency (per Figure 12) often also achieved a high degree of accuracy (per Figure 13).  The fastest three 
drivers (#2, #11, and #12) all had optimal lap times that were below 29 seconds (Figure 12), and exhibited cone strike 
and spinout results that were in the vicinity of, or well below the cohort averages.  At the other end of the spectrum, 
drivers who were not accurate, either in terms of cone strikes, or spinouts (or both) tended to have “optimal” lap times 
that were slower relative to the remainder of the cohort.  This was particularly observed for cohort Drivers #5 and #7, 
whose fastest lap times were considerably higher than the 30.5 second cohort average.  Driver #10, who had the highest 
spinout average in the entire cohort, managed an optimal lap time of under 30 seconds.  In many cases, a “fast” lap 
was often followed by a reckless lap (prone to errors and reduced accuracy), due to the driver barreling across the 
finish line without advance regard to ones driving performance on the subsequent lap.  
 
Figure 14 offers an optimal lap histogram for each of the twelve drivers across each of the five experimental drive 
conditions, and provides some indication of overall proficiency for each driver.  Optimal lap times are listed in five 
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thresholds: < 29s (an exceptional lap), < 30s (a very good lap), <31s (a good lap), <32s (a fair lap), and > 32s (which 
could range from “fair” to “poor”, but is certainly not an ideal lap time).  Expert Drivers #11-#12 raised the bar for 
the entire cohort; each had three exceptional laps (< 29s), and two very good laps (< 30s).  Note that very few of the 
non-expert drivers were able to achieve lap times (for any of the five drive conditions) that were under 30 seconds.  
The exceptions were Driver #2 (who impressively achieved two laps <29s, and three laps <30s), and Drivers #3, #6, 
and #10 (who each achieved three laps <30s).  Conversely, numerous drivers in the cohort offered optimal lap times 
that were less competitive; Driver #4 drove one respectable optimum lap that was < 31s, but had four (two sets of two) 
fastest laps that were < 32s and > 32s, respectively.  Driver #5 had three optimal laps that were < 32s, and two that 
were >32s.  Driver #7 only completed three drives, and all optimum lap times were > 32s.  Generally speaking, those 
drivers with more favorable lap times (Figure 14) regardless of specific drive condition (Figure 12) tended to drive 
with greater efficiency (Figure 11), and with greater accuracy (Figure 13) as compared to the remainder of the cohort. 
 
Self-reported Data 
In this subsection, we analyze the results from our pre/post survey data in a self-contained manner.  We start with 
reporting results from three surveys that were issued prior to the five simulator trials.  Beginning with the JDQ (e.g., 
collateral data related to driving history and style), we offer general driving-relevant details about our cohort.  Refer 
to Table 3, which lists data pertinent to driving history.  Listed for each category are the cohort averages, with the 
standard deviation offered parenthetically.  Note that on average, this was a relatively young cohort (25.4 years), with 
a moderate amount of driving experience (8.4 years), and a relatively low distance driven per week (106.2 miles).  
Regarding the JDQ survey data that queried elements of individual driving style, refer to Table 4. In this Table, we 
list, in descending order, the three highest and three lowest (cohort average) self-report ratings each assessed on a 5-
point Likert scale.  Drivers self-reported their alertness and anticipation as being higher than average, while also noted 
their periodic use of excessive speed while driving.  On the lower end of the scale, our cohort did not feel susceptible 
to lapses in concentration, a feeling of drowsiness, nor a particular propensity to panic under situations of duress. 
 

Table 3 – JDQ history data (cohort average) 
Age 25.4 (7.9) 
Times required to pass road test 1.2 (0.4) 
Years Driving 8.4 (7.9) 
Miles driven each week 106.2 (108.4) 
Collisions this year 0.4 (0.6) 
Speeding tickets this year 0.6 (1.0) 
Other tickets this year 0.2 (0.4) 

 

Table 4 – JDQ Driving Style results 
Category avg (std) 
Alertness with driving conditions 4.25 (0.75) 
Anticipation while driving 4.25 (1.14) 
Excessive speeding while driving 2.66 (1.23) 
Difficulty concentrating when driving 1.83 (0.84) 
Feeling of drowsiness when driving 1.66 (0.78) 
Tendency to panic while driving 1.16 (0.39) 

 

 

In an effort to concentrate on targeted subsets of specific negative driving behaviors (e.g., errors, lapses, and 
violations), we also issued the DBQ, which likewise reports on a 5-point Likert scale.  Some highlights from our 
associated observations can be seen in Figure 15.  Cohort averages are shown in blue, with corresponding standard 
deviations (per series) shown in orange.  Note that the entire cohort self-rated the highest (i.e., poorest driving 
performance) in terms of violations, followed by lapses, followed by errors.  The cohort drivers with the highest and 
lowest overall self-ratings for each of the three categories are as follows: errors (Driver #8: 2.6, Driver #11: 1.1); 
lapses (Driver #1: 3.6, Driver #5: 1.2); violations (Driver #12: 4.1, Driver #7: 1.0).  Finally, it may be worth noting 
the three (out of 28 total) specific queries that had the highest average cohort rating for each of the three categories.  
They were: errors: “19. Did you ever forget where you left your car in a parking lot/ramp?” (2.83 ±1.26); lapses: “26. 
Did you ever realize that you have no clear recollection of the road along which you have just been traveling?” (2.92 
±1.56); violations: “28. Do you ever disregard the speed limit on a highway?” (2.92 ± 1.44). 
 
Our final self-report survey issued pre-experiment was to investigate learning style and information processing 
preferences by way of the LSI.  An overview of results can be observed in Figure 16, which again reports data on a 5-
point Likert scale.  Cohort averages are shown in blue, with corresponding standard deviations (per series) shown in 
orange.  Note that the entire cohort self-rated the highest in terms of visual learning preferences, followed by auditory, 
followed (closely) by tactile.  The cohort drivers with the highest and lowest overall self-ratings for each of the three 
categories are as follows: auditory (Driver #7: 4.1, Driver #12: 2.0); visual (Driver #5: 4.5, Driver #8 and #9 (tie): 
3.8); tactile (Driver #1 and #5 (tie): 3.9, Driver #12: 1.5).  Finally, it may be worth noting the three (out of 24 total) 
specific queries that had the highest average cohort rating for each of the three categories.  They were: auditory: “8. 
I can tell if sounds match when presented with pairs of sounds.” (3.83 ± 0.93); visual: “2. I prefer to see information 
written on a chalkboard and supplemented by visual aids and assigned readings.” (4.41 ± 0.79); tactile: “6. I enjoy 
working with my hands or making things.” (4.41 ± 1.00). 
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Figure 15 – DBQ Results Figure 16 – LSI Results 

 

After the simulation trials were completed, we issued two additional brief surveys.  The first was a series of six Likert-
style questions, inspired by past research which analyzed the feasibility of using gaming as a platform for student 
participation in scientific research.  Basic results are summarized in Table 5.  We can gain valuable insight from the 
average cohort results reported.  Most fundamentally, our data illustrates that our cohort saw value in using game-
based simulation as a component of the course curriculum, with an overall average rating of 4.08 on a 5-point Likert 
scale.  Many of the participants self-reported to have past gaming experience, to gain practical life-skills from playing 
games, and would like to see more applied M&S embedded within course curricula, both for skills reinforcement, and 
to gain an improved understanding of subject matter.     
 

Table 5 – Cohort video gaming tendencies 
Query Most Common Response 
1. How often do you play video games? 1-4 hours per week (7 out of 12) 
2. What can you learn from playing video games? Hand-eye coordination; how to plan and use 

strategy (tie; 11 out of 12) 
3. Instructors should use game-based instruction…(frequency) MORE often in the classroom (11 out of 12) 
4. Instructors should use game-based instruction 
as…(purpose/content) 

Reinforcement of basic skills (7 out of 12) 

5. What was the most interesting aspect of the game-based 
simulations you experienced in RVD? 

To gain an improved understanding of subject 
matter (6 out of 12) 

6. Comparing before this experiment and after, how much did 
you learn about RVD from these exercises? 

4.08/5.0 (±0.67) 

 
Lastly, the cohort was issued a brief survey, the MSAQ, to assess any adverse symptoms relating to adaptation to the 
simulator environment.  As expected, with a younger cohort, reported symptoms were very minor.  The cohort average 
cumulative MSAQ rating was a 10.8 (on a 100 scale), with a maximum rating of 37.5 (Driver #6), and a minimum 
rating of 0.0 (Driver#1 and #4).  The highest rated sickness subscale was Central (16.85/100), followed by Peripheral 
(14.41), Sopite-related (6.71), and Gastrointestinal (4.62).  Of the 16 questions on the MSAQ, the two highest rated 
symptoms were both in the Central category: “6. I felt lightheaded” (2.16/9.0), and “9. I felt disoriented” (1.75/9.0).  
The third highest rated symptom was from the Peripheral category: “12. I felt hot/warm” (1.66/9.0). 
 
Correlation Analysis (Simulator/Self-report) 
In this final subsection, our goal is to identify any trends between measured simulator performance and self-reported 
life styles/trends/tendencies.  As a foundation for our discussion, (and for our formal statistical analysis via SPSS), we 
approached this sub-analysis with two basic hypotheses: 
 

1) Hypothesis #1: Self-ratings on the DBQ (considering each of the three rating subcategories: errors, lapses, and 
violations) are likely to positively correlate to performance demerits on the driving simulator.  In other words, a 
driver who is highly prone to self-reported errors/lapses/violations would be more likely to perform poorly on the 
driving simulator.  Selected outcome measure:  attempt to correlate simulator driving deficiencies by way of 
normalized cone strikes (violations) and spinouts (errors) across all five experimental drives. 

2) Hypothesis #2: Self-ratings on the LSI are likely to positively correlate to simulator performance in accordance 
with criticality of the learning style to the specific training application.  In other words, all three rating 
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subcategories of the LSI (i.e., visual, haptic, and audio) are known in the M&S community to serve as essential 
components of a high-fidelity driving simulation environment.  From past experience, we expect the visual 
element to be most critical to favorable simulator performance, with both the haptic and audio elements serving 
as supplementary (rather than primary) simulation cues.  Selected outcome measure:  attempt to correlate 
“learning” (improvement) on the simulator by way of lap time reduction across all five experimental drives. 

 

Overall, the results of our correlation analyses were not statistically significant.  We attributed this primarily to the 
small sample size (N=12), a cohort which included two non-student (expert) drivers, as well as one student driver 
whose overall performance was prohibitively substandard.  For sufficient statistical power, a cohort of multiple 
hundred student participants might be required.  We nonetheless offer a brief discussion in an effort to explain what 
we expected to observe, justify what we actually observed, and critically, establish basic trends for future analysis. 
 
Regarding hypothesis #1, we expected to find positive correlation between cone strikes (violation) when comparing 
the quantitative data culled from the simulator, and self-report data collected from the DBQ.  What was observed was 
the exact opposite – a negative correlation.  The normalized cone strikes scatter plot is displayed in Figure 17; 
normalized cone strikes on the y-axis, and average DBQ Likert-score (for all “violation” categories) is seen on the x-
axis.  At first glance, this result is counterintuitive.  The data suggests that drivers who self-reported to have inferior 
tendencies during actual driving actually performed better (i.e., fewer violations) on the simulator trials.  This might 
be explained by the fact that good natural drivers felt more comfortable in the simulator environment, and therefore 
felt more compelled to take risks to optimize experimental performance.  At the same time, inferior natural drivers, 
knowing their own real-world limitations, may have innately approached the simulator environment with greater 
caution, placing more emphasis on mastering basic skills than on attempting unachievable mastery.  A similar trend 
(not shown) was observed with our attempt at correlating simulator errors (spinouts) to self-reported DBQ errors; the 
relationship was likewise inverse in nature. 
 

  
Figure 17 – DBQ Correlation (cone strikes) Figure 18 – LSI Correlation (lap time improvement) 

 

Regarding hypothesis #2, we expected to find positive correlation between lap-time improvements across all 
experimental drives, measured in seconds, when comparing the quantitative data culled from the simulator, and self-
report data collected from the LSI.  Here, “improvement” has been quantified by the difference between each 
participant’s mean average lap time and their mean optimum lap time, across all five drive conditions.   Although the 
goodness-of-fit was not ideal, results trended more towards our stated hypothesis.  Specifically, there was positive 
correlation between each of the LSI rating subscales (visual: see Figure 18, haptic, and audio) and observed simulator 
improvement.  Furthermore, and notwithstanding the lack of statistical significance and relatively low goodness-of-
fit to our correlation analyses, it was satisfying to observe that the slope of the “visual” correlation fit (1.359) was 
steeper than the corresponding slopes of the audio (1.111) and haptic (1.021) linear curve fits (graphs not shown).  
This supports our expectation that the visual learning element would be most critical to favorable simulator 
performance, followed by the other two cues which are more supplementary in nature.   
 
In the next section, we summarize this paper with our key findings from quantitative simulator data, self-report data 
acquired from our surveys (pre/post), and an overview of our attempts at correlating the two data sources.  
 
CONCLUSIONS 
 
We presented the design and development of an M&S training exercise into an RVD course curriculum.  The goal of 
the learner was to optimize vehicle performance while our objective as educators was to better determine if simulator-
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measured experimental performance correlates to relevant self-reported tendencies.  Such an analysis could enable 
improvements within future training frameworks by assessing if M&S-based instruction is better suited towards 
certain types of drivers or learners.  We conclude this paper by summarizing highlights from our data observations: 
 Overall performance in the simulator was quantified by way of: efficiency; total number of laps completed (and 

the associated number of legal laps) (Figure 11), optimum lap time per drive condition (Figure 12), accuracy; as 
defined by a minimum number of cone strikes and spinouts (Figure 13), and proficiency; a histogram of optimum 
lap times, relative to critical lap time thresholds, across all five experimental drive conditions (Figure 14).  
Generally speaking, those cohort drivers with more favorable lap times, regardless of specific drive condition, 
tended to drive with greater efficiency, and with greater accuracy as compared to the remainder of the cohort.  

 The JDQ provided data regarding the driving history of our cohort, and preliminary observations relevant to 
driving style.  Notably, we observed high self-ratings for alertness, anticipation, and excessive speed, and low 
self-ratings (i.e., not prone to) lapses due to concentration, panic, or drowsiness.  These self-report ratings were 
not surprising due to the relative youth of our student cohort.  Namely, young drivers tend to dramatically 
overestimate their driving capabilities and have minimized perception of risk, (Ivers et al., 2009), and young 
drivers are much more prone to critical errors due to inexperience (Dellinger, 2012). 

 The DBQ provided an indication that the cohort, taken as a whole, is most prone to violations (e.g., excess speed), 
followed by lapses (e.g., no recollection of recent travel path), followed by errors (e.g., forget where you parked).   

 The LSI provided an indication that the cohort, taken as a whole, most favors Visual learning styles, followed by 
auditory styles (e.g., matching pairs of like sounds), followed by tactile styles (e.g., like to work with hands). 

 We hypothesized that self-ratings on the DBQ are likely to positively correlate to performance demerits (e.g., 
violations, errors) on the driving simulator.  Instead, we observed negative correlations, and suspect that this may 
be due to good natural drivers felt more comfortable in taking risks, while inferior natural drivers realized their 
own  limitations and placed more emphasis on mastering basic skills in the simulator.   

 We hypothesized that self-ratings on the LSI are likely to positively correlate to simulator performance in 
accordance with criticality of the learning style to the specific training application.  Although low in significance 
and goodness-of-fit, this relationship was observed, as was an expected strength of the “visual” correlation, which 
is known to typically be the most valuable cue within a multi-sensory M&S training environment.   

 
In the next section, we offer two primary suggestions for how the simulation framework and data analysis strategy 
established in this paper are being expanded for related efforts. 
 
FUTURE WORK  
 
We envision multiple areas to expand the M&S training framework outlined in this paper.  Primarily, we will apply a 
similar simulator-based test protocol to a standardized test specification.  Currently, the authors are working on 
implementing a suite of simulator-based off-road experiential learning exercises based on the well-known Moose Test 
evasive maneuver (ISO 3888-2) (Figure 19), typically performed to determine how well a certain vehicle evades a 
suddenly appearing obstacle (Schmitt, 2012).  Such an examination would be more safely performed within a 
simulator (Figure 20) than in an actual field test, particularly with novice drivers.  Further, the simulator 
implementation would serve as a practical proving grounds for correlating simulator performance – upon an actual 
vehicle test maneuver - with relevant self-report metrics.  A second simulator implementation is underway (Hulme et 
al., 2017), also related to experiential performance assessment, and will investigate human behaviors in occupational 
roles within a Live-Virtual environment.  For teenagers, it is particularly important to understand the type and intensity 
of functional problems within workplace settings.  The penultimate goal is to reduce occupational impairment, which 
remains a critical impetus of our continued M&S Training and Education efforts. 
 

  
Figure 19 – Moose Test evasive maneuver Figure 20 – Moose Test (virtual design) 
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