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ABSTRACT 

Physically accurate soft tissue models find great use in medical modeling and simulation. When modeled as a 

continuum, soft tissue models typically rely on mesh-based techniques that are well studied. When the problem 

involves extreme deformations or discontinuities in the form of either material discontinuities or spatial 

discontinuities such as cuts and resections, the continuum assumption underlying the mesh-based methods 

disappears. In these cases, meshless (point-based) methods present several advantages over the former. In this paper, 

we present a framework for point-based simulation and cutting of soft-tissue to be used in the context of medical 

surgical simulation setting. The presented framework is implemented as part of the open-source medical simulation 

library SOFA, which focuses on real-time interactive simulations. The continuum equation of the deformable body 

is discretized using the meshless moving least square (MLS) based approximation scheme. The cutting operation is 

realized with a novel easy-to-use intrinsic meshless enrichment technique. 
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1. POINT-BASED METHODS FOR DEFORMABLE OBJECT MODELING 

The ability to model and manipulate deformable objects is essential to many application areas. In order to fulfill the 

requirements of different use-cases, deformable object modeling has been studied across a range of paradigms. In 

this section, we are presenting some of the pioneering work related to deformable object modeling. After discussing 

the adopted point-based discretization of the object and a framework for deformable object modeling, the next 

section presents a methodology to handle discontinuities of deformable objects in this framework. 

1.1. Previous Work 

Approaches for modeling object deformation range from non-physical methods to physically realistic methods based 

on continuum mechanics. The former category of methods makes use of one or more control points or shape 

parameter values. These are typically adjusted in a user-friendly manner to obtain the desired deformation of the 

object. Physically-based methods on the other hand, account for the effects of external and internal forces, material 

properties, and environmental boundary conditions on object deformation. 

The early work of Sederberg and Parry (Sederberg & Parry, 1986) presented a technique for deforming solid 

geometric models in an intuitive free-form manner. In this work, the deformations were based on interpolating 

trivariate Bernstein polynomials, and could be applied either globally or locally with volume preservation by 

encapsulating the target object in a lattice of control points. The control points of the enclosing lattice were 

manipulated in an intuitive way to achieve the desired deformation of the object. Another type of non-physical 

methods is Shape Matching / Position-Based methods. These are geometrically motivated, and on the contrary to the 

physically-based methods, they resolve the dynamics of a deformable object through geometric constraints and 

distances from current to target positions instead of energies and forces. In the work of Müller et al. (Matthias 

Müller, Heidelberger, Teschner, & Gross, 2005), an object, which is composed of individual particles, kept track of 

two configurations: the original shape and the current shape. At each time step, target positions for each particle 

were calculated by matching the original shape of the object to the current shape. Then, the distances between the 

corresponding particle locations of the matched shape and the current shape were used to pull the particles towards 

their target positions. Position-based methods are not as accurate as physically-based methods, but they provide 

visually plausible results, which make them ideal for virtual reality applications and games. 

Free-form deformation and the Shape Matching technique are approximate and simple methods for deforming solid 

objects; however they lack the physical basis, and this is grounds for excluding them as options for realistic 

simulations with medical focus. An alternative to non-physical approximations is to use mass-spring models (Waters 

& Terzopoulos, 1990) and membrane based approximations that utilize spring networks (Van Gelder, 1998). A 

mass-spring network is composed of vertices and edges, in which each edge is realized as a spring that connects 

vertices pair-wise, and each vertex is idealized as a point mass. Although these constructs employ physical equations 

like Hooke’s law, it is difficult to reproduce specific elastic material properties even with very careful distribution of 

spring stiffness throughout the network. Moreover, being stiff systems, mass-spring networks suffer from poor 

numerical stability. 
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A continuum model typically relies on an underlying mesh structure either in 2D or 3D depending on the nature and 

the requirements of the problem. A breadth-first classification of mesh-based continuum models includes Finite 

Element Methods (Bathe, 1996), Finite Volume Methods (Eymard, Gallouët, & Herbin, 2000), and Finite Difference 

Methods (Mitchell & Griffiths, 1980). Among these, the finite element method has received particular interest in the 

biomechanic modeling community. 

The early work of Bro-Nielsen discussed a fast adaptation of finite element modeling to satisfy speed and robustness 

requirements in a surgical simulation setting (Bro-Nielsen, 1998). The body part was modeled as a 3D linear elastic 

solid that consisted of particles, which were deformed into a new shape when forces were applied to the elastic solid. 

In this work, the author incorporated a technique called condensation. In the finite element modeling context, 

condensation translates into obtaining a more compact version of the system model by rearranging or eliminating the 

terms of the matrix equations. For example, for a single element, the displacement degrees of freedom at a node in 

the internal region of the element can be condensed out because they are not used in the interelement continuity 

definition (Bathe, 1996). In a macro level, for a volumetric finite element system, masses of the internal nodes can 

be lumped to the surface nodes, and the equations can be arranged accordingly to only consider finite element nodes 

on the surface of the model. Accuracy of the condensation procedure largely depends on the redistribution quality of 

the masses, in case of a non-optimal distribution, solution accuracy can be adversely affected (Bathe, 1996).  

A number of recent techniques have addressed the fidelity versus efficiency trade-off. Another important work in the 

area is the finite element model based on Total Lagrangian Explicit Dynamics (TLED) by Miller et al. (Miller, 

Joldes, Lance, & Wittek, 2007). The difference between the TLED based finite element model and other approaches 

is the former’s use of the original reference configuration of the object to calculate the stress and strain tensors 

during a simulation step. As a result of expressing computations in the reference coordinates, the authors were able 

to pre-compute spatial derivatives. The pre-computation of the spatial derivatives leads to efficiency in terms of 

computational resources, while being capable of handling geometric and material non-linearities. In their work, the 

authors employed the central difference based explicit integration rather than the implicit integration scheme. With 

this choice, they were able to avoid solving the set of non-linear algebraic equations that are required by the implicit 

integration at each time step. However, the use of explicit integration brings limitation on the time step size. The 

authors justified their implementation choice by stating that the relatively lower stiffness (Young’s modulus) value 

of the soft tissue relaxes the time step limitation considerably compared to the typical simulations involving more 

stiff material like steel or concrete. 

Another attempt to increase the computational efficiency of the elastic model in the context of interactive simulation 

was discussed in the work of Marchesseau et al. (Marchesseau, Heimann, Chatelin, Willinger, & Delingette, 2010). 

The authors presented a new discretization method called Multiplicative Jacobian Energy Decomposition (MJED), 

which allows the simulation to assemble the stiffness matrix of the system faster than the traditional Galerkin FEM 

formulation. The authors reported computation accelerations of up to five times  for the St. Venant Kirchoff 

materials. 

1.2. Continuum Elasticity Theory 

Continuum elasticity theory describes the mechanical behavior of the material that is modeled as a continuous 

medium rather than as discrete particles. The matter is assumed to be continuously distributed and fills the entire 

region of space that it occupies. Compared to simpler methods, continuum-based approaches offer a significant 

advantage, which is the convergence of the discrete solution to the continuous solution as the granularity of the 

discretization goes to zero. In addition to this consideration, the material properties are represented with well-

established rheological properties such as Young's modulus and Poisson's ratio, in contrast to the ad-hoc fine-tuning 

requirement of stiffness values of the mass-spring networks. 

In continuum elasticity, deformation of a body is analyzed by studying the three major quantities displacement, 

strain, and stress. These quantities can be formulated either with the Lagrangian formulation, or the Eulerian 

formulation. Eulerian formulation is usually used in the analysis of fluid mechanics problems, where the attention is 

mostly focused on the motion of the material through a regular grid of volume (Bathe, 1996). Therefore, following 

the Lagrangian formulation, configurations are defined as sets containing the positions of all particles of the 

continuum. When the object undergoes deformation, the current configuration of the body is changing continuously. 

It is natural to keep the original positions of the particles, called the reference configuration, and define the 

deformation as the transformation of a body from its reference configuration to its current configuration (Figure 1). 
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Strain, in the Lagrangian formulation, is a unitless 

measure of relative deformation representing the 

displacement between the particles of the current 

configuration and the reference configuration. Any 

strain of a solid material generates an internal elastic 

stress, which expresses the restoring internal forces that 

the neighboring particles exert on each other. The 

relation between stress and strain quantities is defined 

by the so called constitutive equations. In purely elastic 

materials the deformation of the object is recovered to 

its reference configuration after the stress is removed. 

In the continuum elasticity modeling scheme, a deformable object is defined in its reference configuration with 

additional material parameters that are part of the underlying constitutive equations. The points inside the domain of 

the deformable body at its reference configuration are located by material coordinates          , whereas the 

points at the current configuration are located by world coordinates          . The displacement vector field is 

therefore defined as 

 
      

  

  

  

   
   
   
   

        (1) 

The elastic strain tensor ϵ is computed from the spatial derivatives of the displacement field     . ϵ is a 2
nd

-rank 

tensor in three dimensions, therefore having 3 × 3 symmetric elements 
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The components of   are computed by using Green’s nonlinear strain tensor equation 
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where the gradient of the continuous displacement vector field    is essentially the derivatives of            with 

respect to         arranged in Jacobian format 
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The stress quantity is the directional force per unit area applied to a plane. Like the strain measurement, stress is also 

represented by a     tensor, relating the three-dimensional force vector with the normal of the plane 

 
   

         

         

         

 . (5) 

The force per area applied to a plane with normal   is then obtained by multiplying the stress tensor   by  . 

Both the strain and stress tensors are symmetric with six independent components each. For the selection of the 

stress tensor, the concept of being work-conjugate becomes important. A strain tensor and a stress tensor are said to 

be work-conjugate when the stress measure increments multiplied by the strain measure increments give the rate of 

work done by the forces. Work-conjugate property is a requirement for stability and correct solutions for certain 

types of problems (Ji, Waas, & Bažant, 2010). For the Green-Lagrangian strain tensor, an appropriate stress tensor is 

Figure 1. In continuum elasticity, a deformable body 

is represented in two configurations. 
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the second Piola-Kirchoff stress tensor (Bathe, 1996). For an isotropic linear-elastic material, the strain tensor is 

mapped to the stress tensor by the       matrix that approximates the material properties and its elements are 

composed of two independent coefficients, Young’s Modulus ( ) describing the elastic stiffness, and Poisson’s 

Ratio ( ) describing the amount of volume conserved when the material is undergoing deformation 
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The internal elastic forces can be derived through the so-called strain energy formulation. When the continuum is 

undergoing deformation, the energy stored in the system is called strain energy. For isotropic linear materials this 

energy term can be written as 

 
  

 

 
     (7) 

where     is defined as 

 

             

 

   

 

   

  (8) 

Strain energy density is a function of the displacement field, therefore, the elastic force per unit volume is the 

negative directional derivative of the strain energy density with respect to the displacement field. 

1.3. Point-Based Discretization 

Mesh-based discretization techniques such as FEM have dominated the field of computational mechanics in the past 

several decades. They have been widely used for modeling physical phenomena such as elasticity, heat transfer, and 

electromagnetism and they heavily rely on the assumption of a continuous domain. FEM is also not well suited to 

problems involving extreme mesh distortions that result in degenerate element shapes, moving discontinuities that 

do not align with the element edges such as propagating cracks, and advanced material transformations such as 

melting of a solid or freezing. To address these issues, significant interest has been developed towards a different 

class of methods for solving PDEs, namely meshless or mesh-free methods (Chen, Lee, & Eskandarian, 2006; 

Nguyen, Rabczuk, Bordas, & Duflot, 2008). Mesh-based methods divide the deformable body into tightly connected 

finite-sized elements. Meshless methods, on the other hand, represent a deformable object by a set of points, whose 

influence is distributed around them by a weight function (Figure 2). 

  

(a) (b) 

Figure 2. Influence of a node to its neighbors in (a) mesh-based techniques, and in (b) meshless techniques. 

The very first meshless approach dates back to 1977 (Lucy, 1977) and proposed a smoothed particle hydrodynamics 

(SPH) method that was used to model theoretical astrophysical phenomena such as galaxy formation, star formation, 

stellar collisions, and dust clouds. Its Lagrangian formulation allowed diverse usage areas besides astrophysics such 

as fluid flow, ballistics, volcanology, and oceanography (Sukumar, 2002). The discrete SPH form can be written as 
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 (9) 

where      is the approximation of the field variable at the independent variable location  ,   is the set of nodes that 

has the location   inside their domain of influence,       is the weight of the node   at  ,     is the value of the field 

variable at the node  , and     is the size of the domain of the node  . 

Although the SPH method eliminates the necessity of a mesh structure and allows the solution of unbounded 

problems, it also has its limitations. Because of its approximation scheme based only on the weight function, it fails 

to reproduce even first order polynomials, resulting in severe consistency problems (Chen et al., 2006). To alleviate 

this problem, methods that utilize moving least squares (MLS) approximations have been developed. The first work 

that used MLS approximations in a Galerkin method is the work of Nayroles et al. (Nayroles, Touzot, & Villon, 

1992), which was refined by Belytschko et al. (Belytschko, Lu, & Gu, 1994) and named Element-Free Galerkin 

(EFG) method. This class of methods, different from the SPH method, use shape functions in approximations that 

are essentially corrected versions of compact supported weight functions 

               

 

  (10) 

Here, the sum of shape functions       for a given approximation equals to 1, which is known as the partition of 

unity paradigm (Nguyen et al., 2008). 

The shape functions are obtained by first representing the approximation as a product of a polynomial basis and a 

vector of unknown coefficients. Then, a functional is created by taking the weighted sum of square of the 

approximation error. By taking the derivative of this functional with respect to the unknown coefficients and setting 

it to zero for minimizing the approximation error, we obtain a set of equations that are reorganized to solve for the 

MLS shape functions. The order of consistency of the MLS approximation scheme depends on the order and 

completeness of the used basis function. If the basis function used in the approximation is a complete polynomial of 

order k, then the MLS approximation is said to be k
th

 order consistent. This fact makes the MLS based 

approximations more consistent than the SPH method. 

Another technique that has used the MLS approximation is the work of Mueller et al. (M. Müller et al., 2004) , 

which forms the basis of the point-based method discussed in this paper. In the former work, the authors calculated 

the spatial derivatives of the deformation gradient only at the particle locations similar to the meshless collocation 

methods. This technique is capable of simulating a wide range of material properties from very stiff materials to soft 

ones, whilealso handling plastic deformations as well. 

Node distribution is the first step in the presented point-based discretization algorithm, which supports both regular 

and hierarchical distribution of the nodes through the simulation domain. In the case of a simulation domain with a 

regular geometric shape, a regular distribution of the nodes is the natural choice. On the other hand, if the simulation 

domain has a complex geometry, which is the general case, a regular distribution becomes inapplicable. In this case, 

we sample the volumetric simulation domain bounded by the complex boundary surface by hierarchically sampling 

the volume. In the work of Pauly et al.(Pauly et al., 2005), the authors used a balanced octree data structure to 

distribute the nodes inside the volume. In our approach, we first tetrahedralize the simulation domain with well-

established computational geometry libraries like TetGen (Si, 2006) and CGAL (Boissonnat, Devillers, Teillaud, & 

Yvinec, 2000) and then use the set of vertices of the tetrahedra as the meshless node locations. In this way, similar to 

graded finite element meshing techniques, we are able to obtain a higher node density close to the domain boundary 

and fewer nodes towards the interior of the volume where the material is homogeneous. 

Meshless methods represent a deformable body by a cloud of particles with overlapping support domains. Quantities 

such as mass, volume, support size, strain, and stress are stored and updated per particle for the duration of the 

simulation. In this work, the support domains of the particles are spherical and their radii are computed by finding 

the average distance of the central node to its k-nearest neighbors. For efficient neighborhood search purposes, a k-d 

tree data structure is used 
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Weight (kernel) function in the meshless method context describes the way meshless nodes affect each other and 

how the material values of the continuum such as mass, volume, and density are distributed among the nodes. The 

neighboring particles that fall inside the support domain of a central particle are weighted using the polynomial 

kernel function 

 
        

      
      

     
       

       
   (11) 

with     
       

  
, where    and    are the current locations of the neighboring and central particles, respectively and 

   is the support radius of the central particle j (Figure 3). 

 

Figure 3. The weight kernel used in our MLS approximations. Weight functions are critical to solution 

accuracy and stability. Weight functions should be continuous and positive in their support. 

The mass and density of a meshless node are assigned at the beginning and kept fixed throughout the simulation. 

The mass values are initialized with 

        
     (12) 

where ρ is the material density value,     is the average distance of the i
th

 node to its k-nearest neighbors, and   is a 

scaling factor that is chosen so that the average of the assigned densities is close to the actual material density. The 

assigned mass value of a meshless node is distributed around the node with the kernel function. Therefore the 

density of a meshless node is calculated after the mass allocation step by taking the weighted average of the masses 

of the neighboring nodes 

       

 

         (13) 

In our approach, spatial integration is performed through the nodal integration technique. Compared to other spatial 

integration techniques that utilize a background mesh or grid with multiple integration points per region, nodal 

integration is fast and efficient with the added disadvantage of decreased stability. We calculate the spatial 

derivatives of the deformation gradient only at the particle locations similar to the meshless collocation methods. 

2. HANDLING DISCONTINUITIES IN POINT-BASED CONTINUUM MODELS 

In engineering problems, discontinuities are frequently found. In these cases, the continuum assumption of the 

elastic theory is undermined, which typically require special treatment to ensure the correct solution to the system. 

Discontinuities may be caused when the continuum domain is composed of different material types or when there is 

a spatial gap in the continuum such as a cut. 
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2.1. Overview 

In meshless methods, there are three main classes of techniques to treat discontinuity of the field variable 

(displacement). These techniques are: (1) modification of the weight function, (2) intrinsic enrichment of the basis 

of the approximation, and (3) the techniques based on extrinsic enrichment. Discontinuity treatment in meshless 

methods has been studied within a wide range of approaches such as visibility criterion, diffraction / transparency 

methods, and H- and P-Refinements (Chen et al., 2006). 

The visibility method is an example for the techniques that modify the weight function. In this method, the cut 

segment is treated as an opaque object and the influence of a node to another one is decided by drawing a line 

between the two, and testing whether the line intersects with the cut segment or not. Although being simple in 

nature, this method can lead to incorrect discontinuity calculations along the lines that pass through the cut tips. 

Another disadvantage of this method is that it cannot be used to treat non-convex boundaries. The diffraction 

method follows the same steps as the visibility criterion, but improves the technique by passing the ray around the 

cut tip and calculating the influence between two nodes via the ray length. The diffraction method requires complex 

computations of the bending rays and the technique’s extension into three dimensions is even more complex The 

transparency method addresses these shortcomings by simply decreasing the opacity of the cut near its tip. The 

transparency method is easier to extend into three dimensions (Organ, Fleming, Terry, & Belytschko, 1996). 

2.2. Modeling Discontinuities in 2D 

Barbieri et al. (Barbieri, Petrinic, Meo, & Tagarielli, 2011) proposed an  enrichment technique based on distance 

function for handling discontinuities with multiple boundaries. Their method processes cuts as piecewise linear 

segments and calculates the absolute distance of a meshless node to these segments. The enrichment function 

obtained from the distance field is then multiplied with the weight kernel of the node. Compared to competing 

techniques like the visibility criterion, this approach requires less computation and also easily extensible to three 

dimensions. The distance function is computed in the local coordinate system of the cut piece. 

The 2D distance function for a given coordinate      , can therefore be computed in terms of the local coordinates 

      as 

 
           

         (14) 

where   
     is the positive part of the 1D signed distance function       for a 1D segment (in the local coordinates) 

and defined as 

 
         

     
 

   
     

 
  (15) 

where    and    are the endpoints of the cut segment in the cut’s local coordinate system and 

   
     

             

 
. (16) 

When we take the partial derivative of this distance function with respect to the normal coordinate axis  , we obtain 

a discontinuous function across the segment that is 1 on one side of the crack and -1 on the other side and varies 

smoothly around the cut. 

This technique is easy to implement and also applicable to the existing methods to extend their functionalities. One 

shortcoming of the technique is the approach it takes on handling multiple cracks. Let    be the enrichment value for 

the i-th crack on a node  , the cumulative enrichment value for the node   that is in the vicinity of   cracks is given 

by      
 
   . 

Multiplicative application of consecutive enrichments is a practical approach and requires minimum amount of 

processing, but it may also lead to incorrect weight function modifications and therefore fatal instabilities in the 

simulation (Figure 4). 
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(a) (b) (c) 

Figure 4. The problem with the original multiplicative enrichment approach. The weight functions of nodes 

in vicinity of multiple cuts are modified incorrectly. 

In order to address these issues, the distance function-based enrichment technique is extended to support consecutive 

discontinuity fronts in a correct way. In the extended technique, the enrichment values for multiple cuts are 

evaluated inside a grid structure, therefore conveniently taking the name enrichment grid. For each grid point, the 

corresponding enrichment value is calculated similar to the original distance function-based technique, though, 

instead of a multiplicative approach, each grid point is assigned to a specific cut segment region and its enrichment 

value is calculated with respect to this specific crack segment. 

The first step in the enrichment grid algorithm is to set a global coordinate system for calculating the regions of the 

grid points. In 2D, the coordinate system is defined by enrichment origin point    with coordinates         and    

that is the angle between the horizontal axis of the coordinate system and the positive x-axis. The coordinate system 

is updated with each propagating cut as 
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where   is the number of segments,    is the associated weight with the cut segment  , which is typically the length 

of the segment in 2D problems, and    and    are the center point and horizontal angle of the  -th cut segment 

respectively. After setting the global coordinate system for the series of cut segments, each grid point with 

coordinates       as well as the endpoints of the cut segments         are translated into this new coordinate system 

to obtain new coordinates     and      by 

                              

                              . 
(18) 

With these translated points, the modified   
     function is now defined as 

   
                                  , (19) 

where    and    are the  -coordinates of the first and last points of the cut segment series, and   is the Heaviside 

step function. 

The next step to calculate the distance function         is to set the  -coordinates of the grid points. This is 

achieved by assigning a cut segment region for each of the grid points by comparing their  -coordinates against the 

 -coordinates of the cut segment endpoints. A grid point with  -coordinate    is set to be in the region   when    
            . For grid points whose  -coordinates are smaller than    and larger than   , their regions are set to the 

first and last regions respectively (Figure 5). 
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(a) (b) (c) 

Figure 5. Region assignments for multiple cut segments. 

After assigning the region values for the grid points, the s-coordinates are calculated by finding the vertical distance 

of the grid point to the assigned cut segment. For a grid point with coordinates       and assigned region  , the  -

coordinate is calculated as 

                               . (20) 

The       coordinates of the grid points are enough to calculate the extended enrichment function. Using these 

values,         is calculated as in equation (14) and its partial derivative with respect to the  -coordinates is taken 

to obtain the extended enrichment function (Figure 6). 

   

(a) (b) (c) 

Figure 6. Visualization of the extended enrichment function. Unlike the original approach, this function 

modifies the weight functions correctly. 

3. CONCLUSION AND FUTURE WORK 

Soft tissue models typically rely on mesh-based techniques that are well studied with a strong basis. When the 

problem involves extreme deformations or artificial discontinuities such as material discontinuities or cracks and 

cuts, the continuum assumption underlying the mesh-based methods disappears. In these cases, we advocate the use 

of point-based methods for soft-tissue simulation in the context of medical surgical simulation setting. In order to 

handle discontinuities such as a cut, we have extended the enrichment technique with enrichment grids to provide a 

computation cost-efficient way of handling multiple discontinuity fronts. Our extended technique, unlike the 

multiplicative approach, modifies the weight function of the affected meshless nodes in a way such that stability 

problems are avoided. The proposed technique is easy to extend into three dimensions. 
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