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ABSTRACT 
 
This paper presents a methodology that is under development to analyze large X-ray image datasets for anomaly 
and/or defect detection using machine learning techniques. The characterization of anomalies and/or defects can be 
identified through the performance accuracy of either image classification (supervised learning - convolutional neural 
networks) or anomaly detection (unsupervised learning - autoencoders) models. Each learning technique has unique 
hyperparameters and design architectures to aid in creating a robust model to predict against X-ray images of varying 
orientations, brightness and contrast. This method would be a strong complement to the traditional suite of energetic 
material/component characterization tests, particularly for melt-pour explosives, performance-related design intent, 
safety, and/or performance-related defect detection. For safety or performance-related defect detection, the 
methodology enables baselining defects as a feedback loop in the development of new subscale tests and physics-
based models to better understand and predict energetic failure modes, a capability under development at DEVCOM 
Armament Center called Energetic Defect Characterization (EDC). 
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INTRODUCTION 
 
Current and future energetic requirements in artillery munitions are exceeding legacy gun and barrel designs as well 
as flight environments. This means that non-critical defects of today may become critically defective in the future. 
Defective artillery has caused catastrophic failures at gun launch, injuries and fatalities to personnel, and damage to 
platforms (Ismay; Kumar; Singh). Preventing and mitigating these potentially critical defects is a priority for the U.S. 
Army. While there are processes in place to detect defects, these methods are time intensive, expensive, and outdated. 
It is time to establish the detect detection methodology of the future. Given the impact of this task, the U.S. Army 
Combat Capabilities Development Command - Armaments Center is working to develop and demonstrate modern 
defect detection capabilities. 
 
The Capability Development Effort - Energetic Defect Characterization (CDE - EDC) is a new capability development 
program funded by U.S. Army Combat Capabilities Development Command Armament Center at Picatinny Arsenal. 
This effort aims to develop capabilities to enable experimental and computational evaluation & prediction of 
energetics with defects, especially for enhanced munitions (LRPF). In addition to the working group located at 
Picatinny Arsenal, there is also international cooperation with the NATO Working Groups and The Technical 
Cooperation Program (TTCP). Additionally, analysts are also collaborating with cadets at the United States Military 
Academy (USMA) at West Point. CDE – EDC is comprised of three core sub-groups: Experimental, Data Analysis, 
and Computational, all of which are located at DEVCOM-AC. The relation between the three sub-groups is seen in 
Figure 1. This report focuses on the work completed by the Data Analysis sub-group. With the combined technical 
expertise of these three sub-groups, DEVCOM-AC is striving to provide updated capabilities and guidance for defect 
detection, characterization, and mitigation. 

 
The Experimental Testing Sub-Group is in the 
Energetics, Warheads, and Manufacturing 
Technology Directorate and is tasked with 
identifying and quantifying the fundamental 
physical and chemical mechanism(s) that may 
drive unintended ignition of defective energetics. 
There are a variety of physical tests being 
completed by this sub-group to collect this data. 
Part of this task incudes improving realistic defect 
replication for the physical testing.  
 
The Data Analysis Sub-Group is in the Systems 
Analysis Division and is tasked with using machine learning to flag and characterize anomalistic and defective 
inspection images. The knowledge gained from using these models will aid both the experimental and computational 
sub-groups in their tasks.  
 
The Computational Sub-Group is in the Energetics, Warheads, and Manufacturing Technology Directorate and is 
tasked with modeling defects in energetics to assess whether premature ignition is likely or not. This sub-group 
simulates gun launches given energetic parameters to determine effects of defects. This sub-group uses models such 
as Abaqus and STAR-CCM+. The computational sub-group compares model outputs to the physical test outputs from 
the Experimental sub-group. As such, it relies heavily on the experimental sub-group and vice versa.  
 

Figure 1: EDC Sub-Groups 
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The deliverable of this effort will be a self-sufficient stand-alone predictive tool that can be utilized by the radiologists 
examining manufactured munitions. This report will focus on the machine learning portion of this effort. 
 
CURRENT METHODOLOGY 
 
The current defect detection methodologies are time intensive, expensive, and outdated. While the specific aspects of 
a methodology depend on project/munition requirements, the general process involves multiple radiologists examining 
X-ray/CT scans of manufactured munitions. There are many types of defects: gas porosity, gaps, voids, cracks, etc. 
The size, type, and location of these defects all come together and may or may not result in a critical defect. However, 
recreating critical defects in these specific types is a difficult challenge, and is one that the current effort is also 
investigating experimentally (Lin).  
 
By leveraging machine learning methods, the goal is 
to be able to determine whether a critical defect is 
present as well as gaining a clearer understanding of 
defect characterization, and, indirectly, their effects. 
Figure 2 illustrates our “crawl, walk, run” approach 
for accomplishing these goals. To “crawl” we 
conducted a standard literature review focusing on 
industry standards for manufacturing defect 
detection (Ferguson MK). This yielded 
convolutional network architectures, as well as 
transfer learning models that served as a valid 
starting point for this study. To “walk” we are 
implementing machine learning models with 
increasing complexity. Building up from a simple 
binary classification model, towards a multi-class 
defect detection and characterization. To “run” we 
are maturing and consolidating our developed model 
and tools into a deployable form factor which will be extendable to new defects and munitions.   

 
COMPUTATIONAL TOOLS 
 
The Python Programming Language was used for both data preparation as well as model building and training. 
Standard (accepted) python packages for machine learning were used for this effort, such as pytorch, tensorflow, 
numpy, pandas, opencv, and labelme. 
 
Analysts initially began work on this effort using the Artificial Intelligence Research Infrastructure (AIRI), which is 
a local, unclassified high performance computing cluster located at Picatinny Arsenal. They also made use of the 
Department of Defense High Performance Computing-Modernization Program (DOD HPC-MP) on the Onyx cluster. 
After methodical experimentation with image analysis and model training on HPC resources, analysts realized that 
the computational power of the HPCs were not 
necessary for the current munition data set. 
Analysts were able to efficiently transfer the 
model workflow over to their laptops without 
any loss in performance. 
 
INPUT DATA 
 
Exploratory Data Analysis 
 
The munition focused on in this report will be 
referred to as Type 2. The X-ray images for this 
munition were captured from 2020-2021. The X-
ray images were captured for one aspect angle. 

Figure 2: Crawl, Walk, Run 

Figure 3: Type-2 Image Classes 
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The dataset of all images amounted to 680 GB, with 79,947 munitions captured. Out of these images, 349 munitions 
were classified as defective by radiologists, representing 0.44% of all munitions. This is an extreme imbalance between 
the two classes of non-defective vs. defective. This class imbalance will have to be considered when model building. 
In addition, 804 images were unlabeled. These images were removed from the data set. Figure 3 depicts the split 
among the image classes.  

 
Data Quality 
 
The requirements document divides the 
munition into four vertical zones as depicted 
in Figure 4. These zones are referred to as 
zones A, B, C, and D. Zone A is at the base 
of the munition and zone D is close to the 
nose. According to the requirements 
document, each zone has a different threshold 
regarding what constitutes a defect or not. Newer 
munitions are undergoing extremely high altitudes, high temperatures, set back and vibration shock as well as impact 
forces.  Due to the physics of a gun launch, the base of the munition (zone A) is subjected to higher pressure and 
temperature than other zones of the munition. Therefore, there are different defect requirements for each munition 
zone.  

During a manual image inspection of Type-2 munition X-rays, anomalies were found and confirmed. These anomalies 
were not confirmed to be defects according to the munition requirements. Figure 5 depicts three different munitions, 
all randomly selected, with their anomalies pointed out. These munitions display signs of piping, gas porosity, and 
cracks. However, none of these munitions were labelled as defective, due to their location within a specific munition 
zone, combined with their shape and size. Because the location is so important to the defect determination, images 
will be segmented into individual zones 
before model training. If images were not 
segmented by zone, before being used in 
the machine learning model, then the 
model would have a hard time determining 
which munitions are defective or not. This 
is attributed to the presence of non-
defective anomalies in a zone that are 
defined as defects by the requirements 
document in another zone and vice versa. 
 
Additionally, the background removal of each munition was explored to improve model performance. The analysts 
hypothesized that the background represents noisy and distracting data that is outside the munition region of interest 
and is not relevant to munition defects or anomalies. Analysts predicted that including the munition background would 

Figure 5: Munition Anomalies 

Figure 4: Munition Zone Segmentation 

Figure 6: Noisy Background 
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make training more difficult for the neural network. Figure 6 is an example of a noisy background that would making 
model training more difficult. In this figure, everything outside of the red border would be considered noise. However, 
this ended up not being the case for every munition zone. For Zone A, the background was necessary to aid model 
training. This will be covered in more detail in the Results section of this report. For 
Zone B, the background was removed. 
 
Data Processing 
 
Each image received is a 16-bit image, meaning that there are 65536 possible gray 
values for each pixel. To make anomalies and defects stand out in this image when 
examining the X-rays, the radiologists suggested for the analysts to make use of the 
Wallis filter. The Wallis filter is a locally adaptive contrast enhancement filter that 
raises the contrast in low contrast regions and lowers the contrast in those sections 
that are too high (Navard). An example of an unfiltered (raw) X-ray image of a 
munition and the effect of the Wallis filter is captured in Figure 7. The Wallis filter 
function is defined below in Equation 1. The Wallis filter was not used to process 
images feeding into the machine learning model but was used by analysts during 
munition masking. 
 

𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑗𝑗) = 𝛼𝛼 ∗ 𝜇𝜇 + (1 − 𝛼𝛼) ∗ 𝑚𝑚(𝑝𝑝, 𝑗𝑗) + �𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝(𝑝𝑝, 𝑗𝑗) −𝑚𝑚(𝑝𝑝, 𝑗𝑗)� ∗
𝜎𝜎

𝜎𝜎 + 𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑙𝑙
 (1) 

𝛼𝛼: Brightness factor 
𝜇𝜇: Target mean 

𝜎𝜎: Target standard deviation 
𝑚𝑚(𝑝𝑝, 𝑗𝑗): local mean 
𝑝𝑝𝑝𝑝𝑚𝑚𝑝𝑝𝑙𝑙: Gain factor  

 
The next step of data processing is the munition masking. This was done using the python package labelme and a U-
net. Labelme is Python package which is a graphical image annotation tool and was inspired by a project at MIT (B. 
C. Russell). Labelme allows for image annotation, image flag annotation, video annotation and more. For this 
application, analysts used the Wallis filter and labelme to create a dataset of labeled munitions, where the body of the 
munition was delineated and saved. An instance of the labeling is seen in Figure 8. The body of the munition is “cut 
out” and marked with the munition name.  
 
While the filtered images were used by the analysts to 
clearly see the border between munition and 
background, the input data to the U-net are the 
unfiltered (raw) munition images, as along with the 
.json file of the munition masking. A U-net is a 
convolutional network architecture that is used for 
image segmentation. A U-net, also called a “fully 
convolutional network” and was developed by the University of 
Freiburg in 2015 (Ronneberger).  The architecture of the U-net is depicted in Figure 9. The images are read into the 
network and are propagated through all possible paths. The output of the U-net is a segmentation, or a mask of the 
image. The first portion of the U-net is a contraction, consisting of typical convolutional layers with a nonlinear 
activation function (ReLu) and max pooling layers. The second part of the architecture is the expansion. This portion 
makes use of up-sampling followed by a convolutional layer, known as “up-convolution” to get back to the original 
image size with labelled segmentation. The output of the U-net is a predicted mask for the munition border, which is 
used for both background removal and zone segmentation. 

Figure 7: Unfiltered Image and 
Wallis Filter Effect 

Figure 8: Labelme Functionality 
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One benefit to the U-net is that it can train on a small, annotated input data set. The analyst originally manually labelled 
100 images. During training iterations, this eventually grew to 950 munition X-ray images. Note that this is less than 
1.2% of all munition images. Before being fed into the network, the images were resized from their original 992 x 
3878 pixel dimensions to 128 x 512. Using smaller images with the U-net allowed analysts to train a larger AL model, 
capable of learning more features within the data. It also reduces disk pace and training time requirements. 

Additionally, the smaller image pixel dimensions are in powers 
of 2. This removes complications from the U-net layer sizes. 
The annotated data set has approximately 50% non-defective 
images and 50% defective images. Having this higher split 
between non-defective and defective munitions allows for 
more robust model training to account for variation of munition 
backgrounds in both non-defective and defective images. The 
U-net trained for a maximum of 200 epochs with the Adam 
optimizer. However, an early stopping condition was 
implemented. If the validation loss worsened by at least 0.01 
relative to the last best recorded measure during training over 
20 epochs, then the training ended, training ended. The 
validation loss function for this network was binary cross 
entropy loss combined with a sigmoid, resulting in a logit 
output.  

 
The metric used to test performance of this network is the 
Dice coefficient, which is used to measure the similarity 

between two samples, often for image segmentation. An example of the background removal is seen in Figure 10. The 
U-net performance for the munition masking had a mean Dice coefficient of 99.21%, with a standard deviation of 
0.19%. Any holes that are present in the predicted mask are fixed by using a convex hull around the prediction mask. 
The Dice coefficient function is defined below in Equation 2.  
 

𝐷𝐷𝑝𝑝𝐷𝐷𝑝𝑝 =  
2 ∗ 𝑇𝑇𝑇𝑇

2 ∗ 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝑇𝑇 + 𝐹𝐹𝐹𝐹
(2) 

𝑇𝑇𝑇𝑇: True Positive 
𝐹𝐹𝑇𝑇: False Positive 
𝐹𝐹𝐹𝐹: False Negative 

 

Figure 9: U-net architecture 

Figure 10: U-net Munition Masking Example 
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The next step of data processing is splitting the munition 
into its respective zones. This is an automated process and 
is based off of the munition masking outputted from the 
U-net. Because there is minimal variation in the height of 
the predicted masks of the munitions, each zone segment 
of the munition is a constant pixel height. Thus, each 
munition image is divided into the four munition 
segments according to the requirements document. An 
example is depicted in Figure 11. The full data processing 
workflow is illustrated in Figure 12. 

 
MODEL BUILDING 
 
The model building workflow will be composed of three portions, depicted in Figure 13. Each layer acts as a funnel, 
separating defective and non-defective images.  

Using Variational Autoencoders 
 
The top layer of the funnel is a variational autoencoder. The inputs to this neural network are the zonal segments of 
the filtered munition image. An autoencoder is a type of neural network that can learn a latent representation of the 
input space. This type of architecture is often referred to a “bow-tie” shape because it has two distinct portions to the 
network. The first half of the network is called the encoder; it decreases the input shape into what is known as the 

Figure 12: Data Processing Workflow 

Figure 13: Model Workflow 

Figure 11: Zone Division 
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latent space, which learns the most significant patterns in the data. The encoder learns the normal distribution 
(represented by 𝜇𝜇 and 𝜎𝜎) of the input space. 
Gaussian noise is then sampled from this 
distribution. The second half of the 
network, the decoder, is symmetrical to the 
encoder and recomposes the signal from the 
Gaussian noise in the latent space. The loss 
function represents the difference between 
the input and the output, known as the 
reconstruction loss. The structure of our 
network is in Figure 14. There are 2 layers 
each in the encoder and decoder, with 700 
fully connected nodes in the first layer and 300 
fully connected nodes in the second layer.  
 
For this effort, the variational autoencoder is trained on a dataset with only non-defective images. By training the 
autoencoder only on the non-defective images, the result is a machine learning model that has learned a compression 
and decompression algorithm for non-defective munition X-rays. Then, when it is tested on a dataset with a mix of 
both non-defective and defective images, the defective image has a higher reconstruction loss, thus setting them apart 
from images without defects. This reconstruction loss error for each pixel defined as a linear combination between 
mean squared error and Kullback–Leibler divergence. These 
functions are defined in Equation 3.  
 
An example of how the reconstruction loss is illustrated in Figure 
15. Blue segments are non-defective samples and defective 
samples are red. Because the autoencoder has been trained on 
non-defective images, they are expected to have a very low 
reconstruction loss. Likewise, the defective images often have 
higher reconstruction loss. However, there is still the opportunity 
for misclassification. A threshold value is set for the 
reconstruction loss; any reconstruction loss value below the 
threshold is classified as non-defective, and anything above is 
classified as defective. There can be defective images with 
reconstruction loss below the anomaly threshold and vice versa. 
Further investigation will occur for defective images falling into 
the “high-risk” area, i.e. defective munitions getting classified as 
non-defective.  

𝑀𝑀𝑀𝑀𝑀𝑀�𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝� =
∑�𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝 − 𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝�

2

𝑛𝑛
 

𝐾𝐾𝐾𝐾𝐷𝐷�𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 ,𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝� = 𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝 ∙ log
𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝
𝑦𝑦𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

= 𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝 ∙ (log𝑦𝑦𝑡𝑡𝑝𝑝𝑡𝑡𝑝𝑝 − log 𝑦𝑦_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝)                                  (3) 

𝐾𝐾𝐿𝐿𝐿𝐿𝐿𝐿 = 1𝑋𝑋10−5𝑀𝑀𝑀𝑀𝑀𝑀 + 1𝑋𝑋105𝐾𝐾𝐾𝐾𝐷𝐷 
Feature Extraction 

 
The second layer of this plan is a feature extractor combined with the requirements document. A line, edge, and cluster 
detector, combined with measurements of length, width, and density. With this, the anomalies in each zone can be 
measured against the munition requirement thresholds to determine if the anomalies should be classified as defective. 
Along with this, the regions of interest can be flagged for further analysis. At this point, the output of the second layer 
is an aggregation of the results from its zonal segments.  

 
Human-in-the-Loop 

 
The last layer of this plan is the radiologist, i.e., the human-in-the-loop. This human will provide focused attention to 
flagged images failing the 1st and 2nd layer of the model building workflow. This will allow for robust model tuning 
as training continues.  

Figure 14: VAE Structure 

Figure 15: VAE Results 
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RESULTS 
 
The results of the variational autoencoder are based on a test data set for each zone. Because each zone has different 
requirements for defect characterization; as well as manufacturing differences, there is not a consistent number of 
defects for each zone. The breakdown of defects per zone is listed in Table 1. For this report, both Zona A and Zone 
B has been trained using the variational autoencoder, with promising results. Moving forward, Zone C will be 
examined as well. Due to the limited number of defects present in Zone D, there are currently challenges to producing 
a useful model capable of predicting defects in Zone D. For Zone A, the test data set was 5119 images, and for Zone 
B, the test data set consisted of 221 images. The autoencoder in its current state can accurately identify defects current 
within both Zones A and B of a munition.  
 

Table 1: Number of Defects per Zone 
Zone Number of Defects 
A 123 
B 44 
C 75 
D 2 

Zone A Results 
 
The confusion matrix for model 
performance on Zone A is depicted 
in Figure 16. The model was able to 
identify 100% of defective samples 
of Zone A. It also identified 
99.94%of non-defective samples in 
Zone A. This model has a precision 
score of 0.98, and a recall score of 
1.00. The reconstruction loss 
histogram shows a relatively clear 
divide between defective and non-
defective images. There are three 
non-defective samples which had a 
reconstruction loss above the threshold 
for anomalies. During training, analysts concluded that including the background of the munition in the training set 
dramatically increased the test accuracy. Without the background included the test accuracy on defective images 
was approximately 70%. Including the background information allows for discriminating information in the X-ray 
that aids the model in distinguishing between defects within the munition energetic and anomalies that are present 
on the outer munition body. 
 
 
 Zone B Results 
The confusion matrix for model 
performance on Zone B is depicted 
in Figure 17. The model performed 
was able to identify 100% of 
defective samples of Zone B. It was 
able to identify 98.99% non-
defective samples in Zone B. This 
model has a precision score of 0.47, 
and a recall score of 1.00. While 
this model performed very well at 
detecting defects, there was a higher 
percentage of non-defective images 

Figure 16: Zone A Performance 

Figure 17: Zone B Performance 
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classified as defective than the Zone A model.  
  
Zone C Results 
 
The confusion matrix for model 
performance on Zone C is depicted 
in Figure 18. The model performed 
was able to identify 99.43% of 
defective samples of Zone C. It was 
able to identify 76.00% non-
defective samples in Zone C. This 
model has a precision score of 0.13, 
and a recall score of 0.99. While this 
model performed well at detecting 
defects, there was a much higher 
percentage of non-defective images 
classified as defective than the Zone A or 
Zone B model. The analysts are currently looking into tuning the hyperparameters of this model using Bayesian 
optimization. Additionally, they are investigating this data set with expert radiologists on the team. 
 
SUMMARY 
 
To summarize, the CDE-EDC is steadily working towards our goal of improving safety for the soldier. With outdated 
requirements, outdated defect detection schemes, and ambiguous defect characterizations, it’s time to improve the 
U.S. Army’s defect detection capabilities.  
 
Focusing on munition Type-2, a Wallis filter was used to increase the contrast of the X-ray images and make the 
munition body more apparent within the X-ray distinct. With the munition body visible, an annotation tool was used 
to create mask images that delineate the munition body from the image background. Then, a U-net was trained on the 
X-ray and mask images, to a high-degree of performance, and used to separate the background from the munition, so 
that the munition could be segmented into its corresponding zones accurately. The munition data was used to train the 
machine learning model. This U-net worked very well, with a 99.21% Dice rate. Munition X-rays were then split 
according to their zones, as defined by requirements, to train the model according to different defect thresholds for 
each zone.  
 
These zonal segments were used as inputs to a variational autoencoder which was trained on a training set of non-
defective images. Using it to predict on a test data set made up of both non-defective and defective images proved 
effective with a high accuracy rate. 
 
FUTURE WORK 
 
There are many directions to take this work in moving forwards. Beginning with our Data Analysis sub-group, we can 
improve the variational autoencoder used to detect defects in Zone B. The current threshold minimizes a linear 
combination of pixel-wise MSE and Kullback–Leibler divergence. However, there may be a way to increase accuracy 
on non-defective samples in Zone B. Additionally, this model methodology still needs to be implemented and trained 
on Zone C of the munition. 
 
Additionally, this model is currently a binary classifier. It can be expanded to a multi-class classifier and determine 
defect types (such as gas porosity, crack, piping, etc.). Characterizing the distinct defect types will feed directly into 
the experimental and computational sub-groups and their task of recreating and simulating defects. Furthermore, this 
model can also be expanded/adapted for CT scan data. While X-ray images are 2-dimensional, CT scans are 3-
dimensional. This volume dimension could have valuable information regarding defect classification and 
characterization. Lastly, this model can be trained on other munitions.  
 

Figure 18: Zone C Performance 
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The things our counterparts can improve on would be capturing data with machine learning in mind. This involves the 
radiologists recording their findings in a consistent and cohesive manner, as well as capturing meta data that is not 

currently available to us, such as instrumentation and calibration. It’s possible some of this meta data could aid the 
model prediction and robustness. If data is collected and curated with traceability in mind, it reduces time spent 
cleaning, as well as tracking down necessary data.  
 
The work chronicled in this report can have wide reaching impacts on the traditional munition manufacturing 
process. There is the opportunity to augment the human-in-the-loop (the radiologist) in the defect detection cycle. 
While the human in this process should never be eliminated, having this machine learning model fully integrated at 
the X-ray site would be valuable to the highly trained technician; either by flagging the cases they should pay the 
most attention to (munitions that might be just barely defective, i.e., the “difficult” ones), or by tagging munitions 
with several critical defects. Additionally, this machine learning model will also help fill knowledge gaps that 
currently exist in the Experimental and Computational sub-groups. Enhancing the understanding of defect 
characterization will allow these sub-group to hone in on particularly important defects. This work of replicating and 
testing/simulating defects will in turn lead to updating requirement documents based on defect thresholds that are 
traceable to specific tests and analysis; improving manufacturing processes to minimize defects; and mitigating the 
effects of munitions defects. These impacts of this growing capability are highlighted in Figure 19.  
 
Deployable Capability 
 
This work has multiple opportunities of deployment. This first is the deployment of the Wallis filter. This has been 
implemented into a desktop executable and is shown in Figure 20. This tool allows for images to be dragged and 
dropped, and all parameters can be adjusted for the individual application. 

 
Additionally, there is the possibility for the entire model workflow to be implemented at the X-ray machine with the 
radiologist. Because the model does not require HPC resources to train, it can be implemented on a laptop or small 
computational device and rigged up into the current radiologist workflow to improve their performance.  
 

Figure 20: Deployable Wallis Filter Tool 

Figure 19: Where we fit into the big picture 
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ABBREVIATIONS AND ACRONYMS 
 
AI:    Artificial Intelligence 
CDE-EDC:   Capability Development Effort - Energetic Defect Characterization 
CNN:                                 Convolutional Neural Networks 
DEVCOM-AC:                Combat Capabilities Development Command – Armaments Center 
DOD HPCMP:  Department of Defense Higher Performance Computing Modernization Program 
EDC: Energetic Defect Characterization 
HPC:    High Performance Computer  
LRPF:   Long Range Precision Fire 
ML:    Machine Learning 
MSE:   Mean Squared Error 
TTCP:   The Technical Cooperation Program 
USMA:   United States Military Academy 
VAE:    Variational Autoencoder 
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