
MODSIM World 2023

2023 Paper No. 3018 Page 1 of 9

Analysis of Centralized and Distributed Air Traffic
Management Systems via Mixed Integer Linear Programs

Rex K. Kincaid, Cameron Curtis Logan Wolf

Dept. of Mathematics, William & Mary Dept. of Mathematics, William & Mary

Williamsburg, VA 23187-8795 Williamsburg, VA 23187-8795

rrkinc@wm.edu, ccurtis@wm.edu lbwolf@wm.edu

ABSTRACT

Air traffic control, so that aircraft avoid collisions and reach their destinations efficiently, is a complex problem.
Centralized control and distributed control are the two most common strategies for managing air traffic. To fully
understand the key differences between the two concepts, we focus on the control problem abstractly, as an
optimization problem. Mixed integer linear programs (MILPs) are used to model the two control strategies. The
performance of the MILPs is compared on simulated data for up to 30 planes needing to resolve conflicts in a 2-
dimensional airspace. Results indicate the strengths and weaknesses of each model rather than an individual
algorithmic approach.

ABOUT

Rex K. Kincaid is Chancellor Professor of Mathematics at William & Mary. His B.A. in Mathematics is from DePauw
University while his M.S. degree in Applied Mathematics and Ph.D. in Operations Research are from Purdue
University. His research interests include network location theory and metaheuristics for discrete optimization
problems. He has published more than 90 peer-reviewed research articles with more than 40 undergraduate and M.S.
degree students as co-authors.

Cameron Curtis is an undergraduate mathematics major at William & Mary graduating in May of 2023.

Logan Wolf is an undergraduate mathematics major at William & Mary graduating in May of 2023. He intends to
continue his education at William & Mary with an M.S. in Computer Science with a specialization in Computational
Operations Research. He is primarily interested in optimization within the transportation industry.

mailto:rrkinc@wm.edu
mailto:ccurtis@wm.edu

MODSIM World 2023

Analysis of Centralized and Distributed Air Traffic
Management Systems via MILPs

Rex K. Kincaid, Cameron Curtis Logan Wolf

Dept. of Mathematics, William & Mary Dept. of Mathematics, William & Mary

Williamsburg, VA 23187-8795 Williamsburg, VA 23187-8795

rrkinc@wm.edu, ccurtis@wm.edu lbwolf@wm.edu

INTRODUCTION

Air traffic management systems address all airborne and ground-based activities of aircraft (e.g., taxiing, takeoff and
landing, air traffic control and airspace flow and capacity decisions). The focus here is on air traffic control and, in
particular, collision avoidance and efficient route planning. Two competing strategies, centralized control and
distributed control, are key components of air traffic control for air traffic management systems. Fundamentally,
centralized control involves a single authority collecting and processing information while distributed control involves
each aircraft collecting and processing information and exercising trajectory decisions autonomously. Proponents of

centralized control emphasize that it allows robust system stability, e.g., a small change in an aircraft’s trajectory due
to weather would not cause a cascade of changes throughout the entire system. On the other hand, proponents of
distributed control emphasize the greater flexibility in trajectory decisions.

Air traffic management requires aircraft path-planning that address multiple aircraft, collision, and obstacle avoidance.
Several researchers have developed optimization models (Richards and How, 2002; Cai and Zhang, 2018), as potential
solution strategies. Our goal here is to develop an optimization model for both the centralized and distributed control
paradigms and evaluate their performance. The results are applicable to both commercial aircraft traffic planning as
well as UAV (Unmanned Automated Vehicles) trajectory planning (Xue, 2020).

Trajectory optimization with collision avoidance constraints has been formulated as a mixed integer linear program
(MILP) to minimize a cost function regarding flight time(s) (Cai and Zhang, 2018). Centralized control involves a
single authority collecting and processing information (e.g., an air traffic controller), while distributed control involves
each plane collecting and processing information and exercising trajectory decisions autonomously (i.e., free flight).

MILP MODEL

A MILP is formulated for an aircraft trajectory optimization problem at a specific altitude in the two dimensional (2D)
airspace. Trajectories are generated randomly and discretized for an aircraft p given by coordinates

(𝑡𝑟𝑎𝑗𝑥𝑝,0 ,  𝑡𝑟𝑎𝑗𝑦𝑝,0),   … .  (𝑡𝑟𝑎𝑗𝑥𝑝,𝑇  ,  𝑡𝑟𝑎𝑗𝑦𝑝,𝑇) over T time steps. Aircraft must start at their initial trajectory
positions and travel within their cone of direction.

Each aircraft p’s objective is to minimize the deviation from its projected trajectory, subject to velocity, separation,

and movement direction constraints. The objective function penalizes aircraft for deviating from their planned

trajectories. To remain a linear programming problem, the objective is formulated with the 𝐿1 norm. The problem is

to minimize the sum of the differences in the X and Y directions for each of the N aircraft in each of the T time steps.

The constraints indicated below are for all p, q ∈ [1,   … ,  𝑁] and for all t ∈ [0,   … ,  𝑇 − 1].

Equation (1), in which 𝑥𝑝,𝑡 and 𝑦𝑝,𝑡 denote the decision variables, specifies the initial conditions for each aircraft along

its projected trajectory. Equations (2) and (3) impose minimum (𝑣𝑚𝑖𝑛) and maximum (𝑣𝑚𝑎𝑥) aircraft velocities, while

(4) enforces a minimum separation distance (minsep) between each aircraft. Equations (5) and (6) enforce a direction
cone of 45 degrees (𝜋/4) for a change in an aircraft's heading.

2023 Paper No. 3018 Page 2 of 9

mailto:rrkinc@wm.edu
mailto:ccurtis@wm.edu
mailto:lbwolf@wm.edu

MODSIM World 2023

2023 Paper No. 3018 Page 3 of 9

min∑∑(|𝑥𝑝,𝑡  − 𝑡𝑟𝑎𝑗𝑥𝑝,𝑡|  +  |𝑦𝑝,𝑡   − 𝑡𝑟𝑎𝑗𝑦𝑝,𝑡|)

𝑁

𝑝=1

𝑇

𝑡=0

𝑠. 𝑡.  𝑥𝑝,0 = 𝑡𝑟𝑎𝑗𝑥𝑝,0 𝑎𝑛𝑑 𝑦𝑝,0 = 𝑡𝑟𝑎𝑗𝑦𝑝,0 (1)

|𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡|  +  |𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡|  ≥  𝑣min  (2)

|𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡|  +  |𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡|  ≤  𝑣max  (3)

|𝑥𝑝,𝑡 − 𝑥𝑞,𝑡|  +  |𝑦𝑝,𝑡 − 𝑦𝑞,𝑡|  ≥  min 𝑠 𝑒𝑝 (4)

cos (𝑎[𝑝, 𝑡]  +
𝜋

4
) ⋅ (𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡)  +   sin (𝑎[𝑝, 𝑡] +

𝜋

4
) ⋅ (𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡)  ≥  0 (5)

cos (𝑎[𝑝, 𝑡]  −
𝜋

4
) ⋅ (𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡)  +   sin (𝑎[𝑝, 𝑡] −

𝜋

4
) ⋅ (𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡)  ≥  0 (6)

Linear programming solvers do not allow absolute value signs. Consequently, to solve such a linear program, the

absolute values constraints are replaced with four linear constraints. In particular, the four constraints for each of the

maximum velocity constraint (3) are given below.

𝑥𝑝+1  −  𝑥𝑝,𝑡   +  𝑦𝑝,𝑡+1  −  𝑦𝑝,𝑡   ≤  𝑣𝑚𝑎𝑥

𝑥𝑝,𝑡  −  𝑥𝑝,𝑡+1  +  𝑦𝑝,𝑡+1  −  𝑦𝑝,𝑡   ≤  𝑣𝑚𝑎𝑥

𝑥𝑝,𝑡+1  −  𝑥𝑝,𝑡   +  𝑦𝑝,𝑡   −  𝑦𝑝,𝑡+1   ≤  𝑣𝑚𝑎𝑥

𝑥𝑝,𝑡  −  𝑥𝑝,𝑡+1  +  𝑦𝑝,𝑡   −  𝑦𝑝,𝑡+1   ≤  𝑣𝑚𝑎𝑥

Each minimum velocity constraint (2) requires additional parameters and decision variables in each of the four

replacement constraints. A parameter, M1, is used to represent a large positive integer as well as two binary variables,

𝐵1𝑝,𝑡 and 𝐵2𝑝,𝑡. Introducing such additional variables is needed to ensure that every aircraft p at every time step t has

only one of the four constraints satisfied as an equality. A similar set of four constraints is needed to replace constraint

(4) and are not shown here.

𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡 + 𝑀1 ⋅ 𝐵1𝑝,𝑡 + 𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡 + 𝑀1 ⋅ 𝐵2𝑝,𝑡   ≥  𝑣𝑚𝑖𝑛

𝑥𝑝,𝑡 − 𝑥𝑝,𝑡+1 + 𝑀1 ⋅ (1 − 𝐵1𝑝,𝑡) + 𝑦𝑝,𝑡+1 − 𝑦𝑝,𝑡 + 𝑀1 ⋅ 𝐵2𝑝,𝑡   ≥  𝑣𝑚𝑖𝑛

𝑥𝑝,𝑡 −𝑥𝑝,𝑡+1 + 𝑀1 ⋅ (1 − 𝐵1𝑝,𝑡) + 𝑦𝑝,𝑡 − 𝑦𝑝,𝑡+1 + 𝑀1 ⋅ (1 − 𝐵2𝑝,𝑡)  ≥  𝑣𝑚𝑖𝑛

𝑥𝑝,𝑡+1 − 𝑥𝑝,𝑡 + 𝑀1 ⋅ 𝐵1𝑝,𝑡 − 𝑦𝑝,𝑡+1 + 𝑦𝑝,𝑡 + 𝑀1 ⋅ (1 − 𝐵2𝑝,𝑡  )  ≥  𝑣𝑚𝑖𝑛

SOLVING CENTRALIZED AND DISTRIBUTED MODELS

Aircraft starting locations and route trajectories were randomly generated by a Python program in a 200 n.m. by 200
n.m. (nautical miles) two-dimensional airspace for a twenty-minute time window (80 time steps of 15 seconds) for

each aircraft. A minimum speed (𝑣𝑚𝑖𝑛) of 1.75 n.m. and a maximum speed (𝑣𝑚𝑎𝑥) of 2.5 n.m. for each 15 second time
step was enforced. (The result is a minimum speed of 420 n.m./hr. and a maximum speed of 600 n.m./hr.) A minimum
separation of value 5 n.m. between aircraft was required. All plane characteristics are identical.

Figure 1. Optimization Model

MODSIM World 2023

2023 Paper No. 3018 Page 4 of 9

Centralized Approach

1. Generate an instance with the Python program.

2. Solve the MILP (trajectory.mod and trajectory.dat) with AMPL/Gurobi.

The solution deconflicts all planes simultaneously. Output consists of the (x, y) coordinates for each of the 80 time
steps as well as the sum of the trajectory distance variations from the original trajectory at each time step.

To solve the distributed model an aircraft is selected to be active. The active aircraft p's trajectory is optimized while
holding the other aircraft trajectories fixed. The objective remains the same: minimize trajectory deviation with
minimum and maximum velocities while maintaining a minimum separation distance at each time step. After an active
aircraft p finds its optimal trajectory, p’s default trajectory is updated, and the process repeats until there are no
conflicts. The order in which the aircraft are deemed active is an exogenous decision. One approach is to identify the
aircraft with the most conflicts in the given time window for each deconfliction MILP problem instance. The outline
of these steps is given below.

Distributed Approach

1. Generate an instance with the Python program.
2. Determine an aircraft, p, with the maximum number of conflicts over the 80 step time window.
3. If there are no aircraft conflicts, then STOP.
4. Else, solve the MILP for aircraft p (all other aircraft trajectories unchanged). Solution deconflicts p.
5. Update deconflicted aircraft p’s trajectory.
6. Go to step 2.

BASELINE MODEL RESULTS

The aircraft trajectory models were written with the AMPL modeling language (Fourer, Gay, and Kernighan 2003).
An AMPL model file contains the objective function, variables, and constraints, while the data and parameters are
written to an AMPL data file by a Python script. Gurobi (Gurobi, 2023) optimization software is used to solve the
problem.

Several computational experiments were run for 10, 20 and 30 aircraft. In the table below three representative test
cases are summarized. In column one, the number of aircraft and model type are listed (C for centralized and D for
decentralized). Column two records the number of route changes. Column three lists the objective function value in
nautical miles (n.m.) and column 4 gives the computational time needed to find the optimal solution in seconds. For
each aircraft row, there is one row for the centralized model (#Aircraft-C) and one row for the distributed model
(#Aircraft-D).

 Table 1. Results for Centralized and Decentralized Models

#Aircraft-
Model

Route
Changes

Objective
Value (n.m.)

Runtime
(seconds)

10-C 3 13.3 1011.5

10-D 2 15.8 7.7

20-C 2 44.1 5555

20-D 5 56.4 56.9

30-C 7 76.5 16624

30-D 8 92.8 75.6

MODSIM World 2023

2023 Paper No. 3018 Page 5 of 9

There are three obvious conclusions. Both models make a similar number of route changes, but not necessarily the
same changes. The centralized model, in our computational experiments, yielded a smaller deviation from the original
route but is not dramatically better than the decentralized model's deviation. The decentralized model, in our
computational experiments, is dramatically faster to solve (roughly 50-100 times faster). Although the decentralized
model's solve times are much faster than the centralized model the solve times are still too long for a real-world
application. Consequently, in the following two sections model extensions are explored to decrease the solve times.

TIME WINDOW ADJUSTMENTS

In an attempt to decrease the solve time, an approach is developed that determines a sequence of smaller time windows
centered around a set of conflicts and solves the associated MILP for all aircraft within the smaller time windows in
a sequential manner. All aircraft not included in a time window maintain their current trajectories. As in the baseline
model, the initial trajectories for all aircraft follow the simplest possible routing: every aircraft proceeds directly and
uniformly towards its destination. This often will not be a suitable routing as aircraft may violate separation
requirements, but at any given time, the expectation is that few aircraft will violate these requirements. Consequently,
each conflict can be treated as its own subproblem involving many fewer aircraft and over a significantly shorter time
window. The net effect is a significantly decreased computational load.

The algorithm, given a parameter w for a time radius, works as follows: first, initialize every aircraft's trajectory as a
direct, constant speed route from its starting point to its end point. At every time t, starting with t=0, perform the
following procedure:

1. Check if any conflicts exist, if not STOP
2. Select a conflict and identify the aircraft involved in the time window (t-w, t+w), for some time radius w.
3. Identify all aircraft which may be affected in resolving the conflict.
4. Create a new subproblem and include only the potentially affected aircraft over the time window (t-w,

t+w). Each aircraft's new starting point is its existing route's position at time t-w. Its new ending position is
its existing route's position at t+w.

5. Solve the new subproblem using the MILP laid out in the baseline model. The output will generate updated
routes for the affected craft in the time window (t-w, t+w).

6. Increment t and return to step 1.

For a time window (t-w, t+w), determining which aircraft may be affected in resolving a conflict requires its own

procedure. The simplest algorithm to do so begins by setting a distance cutoff. Every aircraft’s speed is at most 𝑣𝑚𝑎𝑥,
so over a time window of length 2 ⋅ 𝑤 an aircraft can travel at most 2 ⋅ 𝑤 ⋅ 𝑣𝑚𝑎𝑥. If two aircraft are more than 4 ⋅ 𝑤 ⋅
𝑣𝑚𝑎𝑥 +minsep nautical miles apart, then the separation requirement is guaranteed. Thus, the set of aircraft in the time
window for which the separation requirement is not guaranteed is easily checked. Note that the original conflicting
aircraft is always included in this set. It is possible that not all included aircraft are needed, perhaps some are not party
to the original conflict, nor are they forced to change routes to accommodate the new routing, but violating the
separation requirement expression provides a sufficient, if not necessary, condition to include an aircraft in our
subproblem. As an aside, determining the set of aircraft needed for deconfliction in a time window is equivalent to

finding the maximal connected component containing our original aircraft in a “potential conflict” graph.

Another, slightly more selective, approach considers not only the absolute distance between aircraft but also their

“maximum closing velocity.” All aircraft are restricted to moving in a specific cone of direction pointing from their

starting point towards their destination. This information can be used to narrow the list of potential conflicts in the (t-

w, t+w) time windows. The maximum velocity of an aircraft p1 toward an aircraft p2 is found by checking whether

the heading toward p2 is within p1’s cone of direction. If so, p1 can move toward p2 at a velocity of 𝑣𝑚𝑎𝑥.

Otherwise, p1’s maximum velocity toward p2 is to move along one of the edges of its cone of direction. Define

𝑣𝑝1→𝑝2 and 𝑣𝑝2→𝑝1 as the velocities of p1 and p2 toward the opposing aircraft. Consequently, the distance threshold

can now be expressed as 2𝑤(𝑣𝑝1→𝑝2 + 𝑣𝑝2→𝑝1) + minsep, which is a lower bound on the previous distance

threshold of 4⋅w⋅vmax+minsep. Taking the time to compute 𝑣𝑝1→𝑝2 and 𝑣𝑝2→𝑝1results in fewer aircraft in each

subproblem and, consequently, decreases the solve time for the associated MILP. For instance, consider two aircraft
whose initial separation minsep
− 𝜖 , but are each heading directly away from each other. Under a strict distance threshold these aircraft would
appear as potential conflicting aircraft but would not satisfy the stricter standard which considers their maximum

closing velocities.

MODSIM World 2023

The smaller time window approach has clear advantages in reducing the overall solve time for deconfliction, but it
also requires careful selection of our time window width w. Too small of a time window width may miss longer-term
route conflicts and may not have enough time steps within the time window to resolve the current conflict. This can
eventually create an impossible subproblem in Step 5, even if the original MILP over the complete time window has
a feasible solution. One major problem this presents is that if this approximation fails, it tells us nothing about the
feasibility of the original problem. That is, the MILP resulting from the smaller time window might lead to an
infeasible solution simply because the time window is too small. Lengthening the time window makes it less likely
for the procedure to fall victim to this horizon effect and may well make a previously infeasible problem feasible.
However, longer time windows require more computational effort since, typically, more aircraft are included for
deconfliction.

Figure 2. Overlapping time windows.

The algorithm may also struggle when conflicts have overlapping time windows (see Figure 2). If an aircraft has two
distinct conflicts within w time units (e.g., P1 conflicts with P2 and P3 but in separate conflicts), then the second

conflict will be included in the P1’s subproblem. Thus, P1’s conflict subproblem attempts to resolve the second
conflict or, at least, push it later and out of the time window of the first conflict. This could result in unnecessary route
changes while postponing the resolution of the actual conflict. Similarly, if an aircraft has two conflicts that are
separated by more than w but less than 2w time units, then the later conflict will not be absorbed by the first, but there
is an overlapping period for at least one aircraft in which the route is recomputed.

The algorithm was implemented in python using the AMPL Python API to run the subproblems generated in Step 5.
When tested against the full centralized MILP, this implementation, as expected, delivered significant speed
improvements with only minor increases in the objective value. In one test case, the full MILP yielded an objective
of 17.2 and took 170 seconds to run. The time window approach, for the same problem instance, found a route with
a slightly worse objective value of 17.9 but the solve time was less than one second. As an aside, we should be
mindful that this algorithm will operate best in circumstances where the number of conflicts per time window are
limited to a small number.

One potential option to improve the algorithm, and reduce the problems caused by overlapping time windows, is to
adaptively adjust the time window around different conflicts. For instance, either lengthen a time window slightly to
merge two near conflicts together or, alternatively, shorten two overlapping time windows to eliminate the overlap.
Also, we may want to lengthen or shorten the time window based on some estimate of the time required to resolve
that conflict. For instance, a conflict with many aircraft in close proximity to each other may require a longer time
window to resolve the conflicts. Ultimately, selecting a time window for a given problem instance remains an open
issue but could be the key to reducing excess computation while avoiding the creation of infeasible subproblems
within otherwise feasible conditions.

2023 Paper No. 3018 Page 6 of 9

MODSIM World 2023

2023 Paper No. nnnn Page 7 of 9

DISTRIBUTED MODEL SUBPROBLEMS

A slightly different approach to decreasing solve times is to split the distributed model into subproblems spatially.
This is accomplished with the introduction of a detection distance parameter for each aircraft. Unlike the distributed
model, in which all aircraft know the trajectory of all other aircraft, this model imposes the restriction that an aircraft
only knows the position and trajectory of aircraft within its detection radius. Although restricting information often
results in a worse objective value, this method seeks to reduce solve time by taking advantage of the expectation that
few aircraft will be in conflict at any given time.

Like the baseline model, a python script first randomly generates position and trajectory data for all the aircraft. Each
subproblem is solved with Gurobi optimization software through the AMPL API. Unlike the distributed model, which
determines the aircraft p with the most conflicts, solves the MILP to resolve those conflicts, and continues in this
fashion until all conflicts are resolved, this modification functions more like a time-based simulation. Using the
detection distance parameter and aircraft trajectory information, the python script starts at time = 0, and loops through
all aircraft in an exogenously determined order. For each aircraft, the trajectory information of any aircraft currently
within the detection radius is checked to determine if there is an upcoming conflict. If such a conflict is detected, an
AMPL data (e.g., trajectory.dat) file is generated including only the currently detected aircraft. Since this method is a
modification of the distributed model, the MILP only solves for the optimal trajectory of the current aircraft. The
python script then moves to the next aircraft, in order, and when all detected conflicts are resolved at this time step,
the code moves on to the next time step, and so on. An outline of the algorithm is as follows:

for each time step:
 for each aircraft:
 If (conflict_detected()):
 AMPL.solve()
 update_trajectories()

In this version of the model, the assumption that all aircraft trajectories are known by each aircraft or by a centralized
entity is not required. This change makes the model sequential, with new trajectories being calculated as new
information is known or as additional conflicts arise. In the original distributed model, each MILP includes
information for aircraft whose route trajectories do not come near the current aircraft, and since the number of
constraints grows on the order of the product of the number of aircraft and the number of time steps, this redundancy
quickly becomes computationally expensive. Thus, the detection distance parameter is used to determine which
aircraft are relevant in each MILP subproblem. Furthermore, since the AMPL data file is only formulated at the time
step where a conflict is detected, those earlier time steps in which no conflicts occur are effectively eliminated from
the MILP, further reducing the size of each subproblem. A further improvement could be made with principles from
the time window adjustments of the previous section to eliminate some of the future time steps from the MILP (after
all detected aircraft are out of range). The current implementation, however, solves each MILP for the trajectory from
the current time step for all time steps T.

Table 2 provides computational experience with this approach. All parameters are set to the same values as before,
with the addition of the detection distance, which is set to 25 n.m. for all aircraft. Each test case was randomly
generated, and uninteresting cases with few route changes were excluded. These are not the same test cases used for
Table 1.

Occasionally the random generation of starting positions and trajectories places aircraft close together, but just far
enough apart so that they do not violate the minimum separation constraint but will within a few time steps. The final
line of the above table is one such case, as p2 started at (100, 200), and p21 started at (94.6, 200). Thus, while the two
aircraft are not in conflict at time step 0, they will be at time step 1. Such cases often yield unusually high solve times
and objective values, as the MILP would have had an additional 10 time steps to work with if the conflict did not
occur immediately at the beginning. Still, the modifications to the distributed model yielded significant improvements,
as even this bad case yielded a significantly faster solve time than the 30 aircraft decentralized model test in Table 1.

MODSIM World 2023

2023 Paper No. nnnn Page 8 of 9

 Table 2. Results for Modified Distributed Model

#Aircraft Route
Changes

Objective Value
(n.m.)

Runtime
(seconds)

20 7 32.8 4.43

20 6 21.5 3.28

20 6 53.4 5.19

30 13 94.8 11.7

30 8 69.7 6.54

30 15 172 23.8

CONCLUDING REMARKS

The MILP model developed here provides a means for comparing the performance of centralized versus distributed
aircraft collision avoidance systems. The performance metric in the MILP seeks to minimize route trajectory
deviations from the initial planned route. The computational results show that the centralized model deconflicts aircraft
with the least total deviation from the prescribed routes but at a significant computation cost. The baseline model
results for the distributed system dramatically improve the computation performance with a modest increase in the
performance metric. However, even the improved computational performance of the distributed model is not enough
for real-time decision making in a collision avoidance system.

Two additional approaches for decreasing computational costs were explored. The first approach explored the utility
of subdividing the original time window into a series of smaller ones to deconflict the aircraft route trajectories. The
width of each small time window must be chosen carefully. If the time window width is too large, the solution time
may be prohibitively large and previously optimized trajectories may be needlessly revisited. However, if the time
window width is too small then infeasible solutions may result. One potential option to improve the time window partition

approach, and reduce the problems caused by overlapping time windows, is to adaptively adjust the time window width
around different conflicting routes. A second approach, for decreasing the solve time for route deconfliction, was to split the
distributed model into subproblems spatially. The spatial subdivision was accomplished with a detection distance parameter
for each aircraft. The computational savings were significant (nearly an order of magnitude). It may also be possible to
combine these two approaches.

Many extensions to the current MILP model may be considered. For example, it is straightforward to allow aircraft with
individualized characteristics (e.g., individualized maximum velocity, minimum velocity, and direction cones). Replacing
the performance metric in the objective function with one that focuses on minimizing fuel consumption and/or travel time
may be of more interest than the current objective of minimizing total route trajectory deviations. The current MILP does
not allow for trajectory changes due to weather disturbances. If the performance metric is minimizing fuel consumption,
then the inclusion of convex shaped avoidance regions (weather fronts) will require the model to allow significant changes
to route trajectories than have currently been considered. The addition of a third dimension (changes in altitude) would add
greater flexibility for route changes, but it is unlikely to change the conclusions made here indicating the differences in
performance between centralized and distributed air traffic control systems.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr. Natalia Alexandrov at NASA Langley Research Center for her help in
formulating the problem and feedback on the models presented. Additionally, we acknowledge the contributions of
several William & Mary students in 2012-2013 who built and tested an earlier version of the baseline model (Keith
Webb, Jennifer Thorne (Schilling) and Matthew Zinn). The authors acknowledge William & Mary Research
Computing for providing computational resources and/or technical support that have contributed to the results reported
within this paper. URL: https://www.wm.edu/it/rc.

https://www.wm.edu/it/rc

MODSIM World 2023

2023 Paper No. nnnn Page 9 of 9

REFERENCES

Richards, A.G. & How, J.P. (2002). Aircraft Trajectory Planning with Collision Avoidance Using Mixed Integer

Linear Programming. Proceedings of American Control Conference. ACC02-AIAA1057.

Cai, J. & Zhang, N. (2018). Mixed Integer Nonlinear Programming for Three-dimensional Aircraft Conflict
Avoidance. PeerJ Preprints 6:327410v1. https://doi.org/10.7287/peerj.preprints.27410v1.

Xue, M. (2020). Urban Air Mobility Conflict Resolution: Centralized or Decentralized? NASA Ames Research

Center. AIAA AVIATION 2020 FORUM. June 15-19 VIRTUAL EVENT. https://doi.org/10.2514/6.2020-3192.

Fourer, R., Gay, D.M. & Kernighan, B.W. (2003) AMPL: A Modeling Language for Mathematical Programming. 2nd

Edition. Thompson-Brooks/Cole.

Gurobi Optimization, LLC. (2023) Gurobi Optimization Reference Manual. https://www.gurobi.com.

https://doi.org/10.7287/peerj.preprints.27410v1
https://doi.org/10.2514/6.2020-3192

	ABSTRACT
	ABOUT
	Rex K. Kincaid is Chancellor Professor of Mathematics at William & Mary. His B.A. in Mathematics is from DePauw University while his M.S. degree in Applied Mathematics and Ph.D. in Operations Research are from Purdue University. His research interests...
	Cameron Curtis is an undergraduate mathematics major at William & Mary graduating in May of 2023.
	INTRODUCTION
	MILP MODEL
	SOLVING CENTRALIZED AND DISTRIBUTED MODELS
	BASELINE MODEL RESULTS
	Table 1. Results for Centralized and Decentralized Models

	TIME WINDOW ADJUSTMENTS
	DISTRIBUTED MODEL SUBPROBLEMS
	Table 2. Results for Modified Distributed Model

	CONCLUDING REMARKS
	ACKNOWLEDGEMENTS
	REFERENCES

