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ABSTRACT 

 

This paper presents an adaptive real-time external labeling algorithm for automatically placing labels on 3D models 

essential for creating annotation and visualization in virtual environments. The proposed approach considers a set of 

constraints for the label placement, which include but are not limited to, no overlapping labels, no intersections of 

leader lines with other leader lines or labels, short leader line lengths, and nearly uniform spatial distribution of labels. 

Screen space coordinates are utilized to compute the label positions that comply with the constraints. The 3D object 

coordinates are first converted to the camera coordinates for computing their projections on the viewing plane. The 

projected model is analyzed to determine the model contour and anchor points. The projection screen is evenly divided 

into four partitions, and the number of anchor points in each partition is adjusted so that the label density in each 

partition is relatively uniform and comparable. Then, label overlaps and leader line intersections are detected and 

eliminated, and the leader line length is adjusted using an iterative process. Finally, the labels are rendered on the 

screen. This approach operates in real-time by updating the label positions on the fly when the viewer changes viewing 

positions or directions. The proposed method has been implemented using the Unity game engine to demonstrate its 

ability to place labels automatically in real-time. Experimental results show that the proposed method produces high-

quality label placement, thus providing practical utility for various interactive applications that involve virtual 

environments and having great potential for future Virtual Reality (VR) and Augmented Reality (AR) applications 

that require interactive annotations. 
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INTRODUCTION  

 

From education to medicine to manufacturing, one essential task is understanding the details of complex objects, such 

as assembled machinery or a human anatomy model. Well-placed informative labels that connect visual and textual 

information can provide accurate descriptions and instructions for objects of interest. However, traditional printed 

product manuals are difficult to follow when users interact with complex physical objects containing multiple 

components. Users are often frustrated by the manual's lack of clarity, e.g., the actual parts do not visually match the 

visual illustrations or textual description in the product manual.  

 

Virtual environments can effectively address the issues in traditional printed product manuals or instructions by 

annotating virtual object components in real-time. In virtual environments, labels provide additional information about 

the object in the real world. However, how to automatically annotate various parts of objects from multiple 

perspectives in a virtual environment in real-time remains an open problem. 

 

Many automatic labeling methods have been developed to mimic classic hand-drawn illustration annotation styles 

(Ali, Hartmann, and Strothotte 2005; Bekos, Niedermann, and Nöllenburg 2019; Cmolık et al. 2020). There are two 

main labeling algorithms for object annotations: internal and external. Internal labeling algorithms generate labels that 

overlay visual objects. In contrast, external labeling algorithms create labels outside the objects and are connected to 

the labeled objects by leader lines to avoid occlusions and confusion. 

 

Due to users' constantly changing views in virtual environments, the label layout must be adaptively updated to resolve 

constraint violations, making it easy for users to keep track of the object components of interest. Aside from creating 

static layouts of annotations for a single projected object, labeling algorithms also need to maintain consistency when 

the viewpoint changes. 

 

This paper proposes an adaptive algorithm for the external labeling of point features that adapts to different object 

views. The main contribution lies in applying the idea of real-time external labeling to interactive virtual environments. 

The paper discusses methodologies for creating easily legible, well-spaced, and temporally coherent label layouts for 

complex objects when the perspective changes in real-time. These methodologies reduce cognitive load and improve 

cognitive efficiency in the visualization during viewpoint changes. 

 

 

RELATED WORK  

 

External labeling algorithms have been investigated in computer science from practical and theoretical points of view 

and have been applied in many fields over the last twenty years. While internal labeling has achieved great success in 

applications such as maps, external labeling is especially valuable for applications such as annotating object parts in 

a virtual environment, as external labels do not interfere with other objects. The application of external labeling 

algorithms can be divided into static and dynamic applications based on whether labels change over time (Bekos, 

Niedermann, and Nöllenburg 2019).  

 

There have been many examples of external labeling in static applications, such as atlases of human anatomy 

(Niedermann, Nöllenburg, and Rutte 2017) and visual dictionaries (Cmolık and Bittner 2019). However, this type of 

research only focuses on a fixed viewing specification or restricts the objects to be annotated, which cannot meet users' 

needs to observe objects in a virtual environment in real time. 
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External labeling in dynamic applications applies external labeling in digital visualizations that change over time. This 

labeling algorithm is usually found in view management systems, where users can interactively explore 3D models 

(Madsen et al. 2016). Most current dynamic labeling algorithms focus on solving the label flickering and jumping 

problem. Ali et al. presented an algorithm that considers layout decisions from the previous frame to achieve a frame-

coherent label layout during user interactions (Ali, Hartmann, and Strothotte 2005). However, the random changing 

range of objects in an interactive virtual environment makes it impossible to solve the flicking and jumping problem 

by inheriting the data from the previous frame, which may lead to label overlapping. This paper also inherits the data 

from the previous viewpoint to maintain temporal coherence but simultaneously update label positions to satisfy 

labeling constraints, such as no label overlap. Tatzgern et al. proposed placing labels in 3D object space and using 

geometric constraints to achieve the required label layout and behaving consistently over time during viewpoint 

changes (Tatzgern et al. 2014). However, this method requires the user to set up multiple planes at runtime to solve 

the problem of label overlap, which increases computational costs and cannot fully solve the overlapping problem 

between the planes. We also employ geometric constraints to obtain a satisfactory label layout in real-time, but only 

in 2D projection space, to reduce computational costs and increase the speed of the labeling algorithm. 

 

 

TERMINOLOGY AND CRITERIA  

 

Labels represent textual or symbolic descriptions of the model's parts. Geometrically, the label is defined as the axis-

aligned rectangle containing the attached information of the feature in this paper. An illustration with external labeling 

consists of a projected object, a set of labels outside the object, and their corresponding leader lines. Leader lines are 

the line segments connecting the labels with their parts. Only straight-line segments are used as leader lines in this 

paper. One endpoint of the leader line is restricted to be the center point of the labeled part in this paper. The other 

endpoint of the leader line, named as the reference point in this paper, is a point on the boundary of the label, which 

is restricted to one corner or the midpoint of one particular edge of the label. 

 

In order to formalize the criteria for our algorithm, we utilize well-established labeling guidelines for external labeling 

of point features found in the literature (Bekos, Niedermann, and Nöllenburg 2019). The set of rules adapted to the 

needs of external dynamical labeling is as follows: 

 

R1. The label should be placed outside at some distance from the model component. 

R2. Labels are placed horizontally. 

R3. Labels must not overlap. 

R4. There are no intersections of leader lines with other leader lines or labels. 

R5. The leader lines have small lengths. 

R6. The labels are distributed evenly on the screen.  

 

 

ALGORITHM CORE  

 

The proposed method is a screen-space technique operating in a view plane on which the 3D models are projected. 

Figure 1 presents the system architecture of the approach. The content presented on labels is obtained from the product 

manuals. The projected model is analyzed to determine the model contour and anchor points used to satisfy rule R1. 

The projection screen is divided into four partitions, and the number of anchor points in each partition is adjusted so 

that the density of each partition is relatively consistent with satisfying rule R6. Then, label overlaps and leader line 

intersections are detected and eliminated, and the leader line length is adjusted as short as possible simultaneously. 

Finally, the labels are rendered on the top of the screen. 

 

The most vital part of the algorithm is Label Layout which includes three important actions: label density adjustment, 

label rotation, and leader line extension. Label density adjustment is used to satisfy rule R6. Label rotation and leader 

line extension are combined or used independently in Local Label Placement and Global Label Refinement procedures 

to satisfy the rules R3, R4, and R5. 

 

Label Density Adjustment 
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Label density refers to the number of labels per unit area. This paper calculates a rough estimation of label density as 

the number of labels in a screen partition. The partition of the screen is shown in Figure 2. The screen is divided into 

four partitions: 0, 1, 2, and 3. In order to simplify the formulation, each partition includes a start boundary and an end 

boundary, and this paper uses a clockwise order for all labels. The anchor points of the model are divided into four 

groups based on their coordinates on the screen. Since the number of anchor points in each partition is not necessarily 

the same, adjusting the number of anchor points in each partition is essential to distribute labels evenly before adjusting 

the label position. 

Figure 1. The system architecture of the proposed labeling algorithm. 

 

Label density adjustment occurs when two adjacent partitions' numbers of anchor points differ significantly. If the 

difference between the number of anchors in two adjacent partitions is more than one and the larger of the two numbers 

is more than three, the algorithm will perform label density adjustment. First, the number of anchor points to be 

adjusted is determined by calculating the average number of anchor points in the two partitions. Then the distance 

between each anchor point and the shared boundary of the two partitions is calculated and sorted. The anchor point 

that is the shortest from the shared boundary of the two partitions is then assigned to the partition with fewer anchors. 

The labeling density of each partition is adjusted in pairs to shorten the leader line length as much as possible, as 

shown in Figure 2. 
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Figure 2. The schematic of screen partition and label density. After label density adjustment, the partition 

attribute of anchor point A1 is adjusted from Partition 0 to Partition 1. In other words, the label for anchor 

point A1 is placed in Partition 1. 

 

Label Rotation 

 

Following the determination of the number of anchor points for each partition, the shortest distance from each anchor 

point to the model contour in the partition is calculated, and the intersection with a particular segment in the section's 

contour found by the shortest distance is the initial value of the reference point. Therefore, the initial reference points 

summarize all the leader lines with the shortest length. Furthermore, its corresponding label's position is determined 

based on the angle between the leader line and the positive X-axis, as illustrated in Figure 3. 

Figure 3. The schematic of the relationship among the label, the reference point, and the leader line. The 

angle between the leader line and the positive X-axis determines the position of the label to the reference 

point. 

 

Label rotation is one of the primary adjustment methods in this paper. When two labels overlap, or one of the label's 

leader lines intersects with another leader line or another label, one label is selected to rotate around its anchor point 

clockwise or counterclockwise to solve these issues. Let the chosen leader line rotate a certain angle around its anchor 

point, extend or shorten the leader line to intersect with the model contour, get a new reference point, and then find 

the new label position according to the angle between the leader line and the positive horizontal axis. 

 

Leader Line Extension 

 

The leader line extension is the other one of the primary adjustment methods in this paper. When the label density in 

a specific partition is so high that label rotation cannot avoid label overlap, leader line intersection, or leader line and 

label crossing, leader line extension is an effective way to solve the above problems. What needs to be paid attention 

to when extending the leader line is to comply with rule R5; the length of the leader line is as short as possible. 
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ALGORITHM ENGINEERING  

 

It is necessary to determine the relationship of one or more labels to other labels. Moreover, it is necessary to rearrange 

some labels to avoid leader line intersection, label overlap, and the intersection between leader line and label. Initial 

experiments showed that a naïve implementation of the above adjustment methods does not yield acceptable labeling 

results. This section further describes how these methods can be implemented efficiently to solve labeling problems. 

 

Local Label Placement 

 

This paper uses the sort-and-sweep method (Ericson 2005) to sort all the labels in a particular partition and then detect 

whether there are intercrosses between the leader lines, overlaps among the labels, and intersections between one label 

and the other label's leader line. The labels are sorted clockwise based on the angle between the start boundary of the 

partition and the line connecting the reference point and the screen center point. For example, as shown in Figure 4, 

the start boundary of partition 1 is L1-start, and the end boundary is L1-end. There are n labels. These labels are sorted 

clockwise. 

 

Figure 4. The schematic diagram of labels that are arranged in a clockwise direction in Partition 1. 

 

In a particular partition, two adjacent labels, including the current and previous labels, are adjusted as a group. 

Therefore, the labels in a specific partition are divided into three types: the partition's first label, the second includes 

labels from the second to the penultimate, and the third is the last. The pseudo-code of the Local Label Placement 

procedure is shown in Figure 5. 

 

Since the first label in the partition is the current label and has no previous label, it is processed based on its relationship 

with the start boundary. 

 

1. If the first label crosses the start boundary, it is rotated clockwise by a certain number of degrees 𝜀𝑖 = 𝜃𝑖/𝛼, 𝜃𝑖 =
90/Σ𝑖 , 𝑖 = 0,… ,3, 𝛼 is an adaptive parameter, set as 3 in this paper, Σ𝑖   is the number of labels in partition i. Then the 

new label position is calculated, and this step is repeated until the first label is located inside the partition. 

 

2. If the first label does not cross the start boundary, the algorithm calculates two distances: 1) the average distance of 

the remaining reference points, 𝑑𝑙1, which is the distance from the current reference point to the contour endpoint in 

the current partition divided by the number of anchors less one, and 2) the average distance of all reference points, 

𝑑𝑙0, which is the distance from the contour start point to the contour endpoint in the current partition divided by the 

number of anchors. If 𝑑𝑙1 is less than 𝑑𝑙0, the current label is rotated counterclockwise until 𝑑𝑙1 is equal to or greater 

than 𝑑𝑙0, or the current label is about to exceed the partition's start boundary. 
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Figure 5. The pseudo-code of local label placement. 

 

For any label in the second type, its group includes two labels. The first step is to check whether the leader lines of 

the two adjacent labels intersect. If so, the positions of the reference points corresponding to the crossed leader lines 

are exchanged. Then, the sort-and-sweep algorithm is used to re-sort the reference points on the same partition 

clockwise around the model's contour and detect whether there is still a leader line crossing until there is no leader 

line crossing. 

 

The second step is to detect whether the current label overlaps with the previous label or intersects with the leader line 

of the previous label. The current label is rotated clockwise if they overlap or intersect. And then, the label position is 

updated. Furthermore, this step is repeated until the difference between the angle from the new leader line to the 

positive X-axis and the angle between the initial leader line and the positive X-axis is larger than the threshold, 𝜃𝑖, or 

there is no label overlap and no leader line intersection in the group. If the angle between the new leader line and the 

initial leader line exceeds the threshold 𝜃𝑖, and label overlap or leader line intersection still persists, the current leader 

line is extended by a length step size 𝜇 = 𝜌 × 𝑙𝑐, 𝜌 is an adjustable parameter, set as 0.01 in this paper, and 𝑙𝑐 is the 

length of the current leader line until there is no label overlap and no leader line intersection in the group, or the leader 

line length is more than 𝛾 times the initial length, 𝛾 is an adjustable parameter, set as 1.2 in this paper, or the label is 

about to extend beyond the screen boundaries. If the current label does not overlap nor intersect the previous leader 

line, the average distance 𝑑𝑙1 and 𝑑𝑙0 are calculated as discussed before. Similarly, if 𝑑𝑙1 is less than 𝑑𝑙0, the current 

leader line is rotated counterclockwise until 𝑑𝑙1 is equal to or more than 𝑑𝑙0 or the current label is about to overlap 

the previous label or intersect with the previous leader line. 

 

Like the second type of label, the last label in the current partition is first checked to check whether it intersects with 

the previous leader line. If it does, a similar exchange process is performed. Then the last label is checked to see if it 

overlaps with the previous label. If it overlaps, its relationship with the end boundary of the partition is further 

examined. If the last label does not exceed the end boundary, the last label is rotated clockwise by 𝜀𝑖 until the last 

label does not overlap the previous label or is about to exceed the end boundary. However, if the last label exceeds 

the end boundary but still overlaps the previous label, the last leader line is extended by 𝜇 until the last label does not 

overlap its previous label or is about to exceed the screen boundaries. 
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Global Label Refinement 

 

After adjusting the label positions in each partition, it is still necessary to examine whether adjacent labels in adjacent 

partitions overlap and whether their leader lines cross each other. The pseudo-code of the Global Label Refinement 

procedure is shown in Figure 6.  

Figure 6. The pseudo-code of global label refinement.  

 

Like Section Local Label Placement, the sort-and-sweep method is first used to detect whether the leader lines of 

adjacent labels cross. If the leader line intersection is detected, their reference points are directly swapped, and all the 

reference points and labels are updated accordingly. 

 

The next step is to enlarge the distance between two adjacent close leader lines. If the distance between two adjacent 

leader lines is less than a threshold (set as half the label's height in this paper), the steps below are followed to enlarge 

the distance. First, their reference points are exchanged, the new distance between two adjacent leader lines is 

calculated if there is no label overlap or leader line cross, and the new distance is compared with the origin distance. 

If the new distance is larger, the labels are updated. Otherwise, keep it as it is. 

 

The final step deals with label overlap and crossing between one leader line and its adjacent label using recursive 

refinement. If the current label overlaps the next label or crosses the following leader line, the distances between the 

current and the previous label and between the current and the next label, 𝑑𝑖𝑠𝑡𝑐𝑝  and 𝑑𝑖𝑠𝑡𝑐𝑛 , are calculated to 

determine which label is adjusted. If the previous label is farther from the current label, the current leader line is 

rotated counterclockwise. The current reference point and the current label are updated accordingly. If there is an 

overlap or intersection between the updated current label and the previous label, the leader line of the previous label 

is rotated counterclockwise, and the previous label is updated. The above steps are repeated until the current label 

does not overlap or intersect with the previous and the next label. Otherwise, if the next label is further from the current 

label, the next label is rotated clockwise, and the next reference point and label position are updated accordingly. 

 

The steps in these two sections, Local Label Placement and Global Label Refinement, are repeated until there is no 

label overlap and leader line cross, or it is up to the maximum iteration number, set as 150 in this paper. 

 

Viewpoint Change Adaptation 

 

In order to maintain the temporal coherence of the labels when the viewpoint changes, the proposed algorithm 

initializes the label positions with the label positions before the viewpoint change when the partition attributes of the 

anchor points do not change and then refines the label positions using the approaches discussed in previous sections. 

The approach produces good results when the viewpoint changes are gradual and smooth, which accounts for most of 

the use scenarios. 

 

 

EXPERIMENT RESULTS  
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The proposed approach has been implemented in the Unity game engine to demonstrate its ability to place labels 

automatically in real time when the viewpoint changes. Figure 7(a) illustrates the effect of label density adjustment 

on optimizing label distribution when anchors are unevenly distributed on the screen. Figure 7(b) demonstrates the 

temporal coherence of labels when the viewpoint changes. Figure 7(c) shows the results of the proposed method 

applied to an anatomical model. Figure 7 shows the performance of this method under multiple models and different 

viewpoints. 

 

(a) 

 

(b) 

 



 
 

 

MODSIM World 2023 

2023 Paper No. 1098 Page 10 of 10 

(c) 

Figure 7. Label placement with the proposed method. (a) The label layout for the Rifle model. (b) The 

temporally coherent layout for the Rifle model when the viewpoint changes. (c) The label layout for an 

anatomical model. 

 

CONCLUSIONS 

 

This paper implements a point-feature annotation placement algorithm for the automatic placement of external labels 

for 3D models and has experimented with it in several objects. This approach fulfills the desired objectives of labeling 

algorithms (e.g., avoiding label overlapping) and behaves consistently over time during viewpoint changes. The 

implementation provides a smooth transition between changing models. The proposed method has excellent potential 

for future AR and VR applications that require interactive annotations. 
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