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ABSTRACT 

 

Complex problem situations are characterized by heterogeneous components that are interrelated in various, often 

highly non-linear ways. Unexpected properties can emerge, possibly resulting in unintended consequences. Side 

effects also result from well-intentioned policies. Policies intended to address such complex problems are therefore 

predominantly reactive, ad hoc, and narrowly focused on treating consequences rather than the root causes and 

interconnected structural factors that drive the issue. Using a computational support tool allows us to evaluate multi-

criteria and multi-objective decisions holistically; provide immersive feedback to policy makers; identify policies that 

address the issues without creating unintended consequences; and make policy makers aware of emerging and 

potentially negative side effects.  

Artificial societies deliver this capability.  They advance the agent-based modeling paradigm by using social science 

research to integrate human and social factors, utilizing three main components: (1) individual agents reflecting 

demographics and attributes of interest, (2) the situated environment with its infrastructure and social determinants, 

and (3) the social networks in which an individual is engaged. Policies are regulating the constraints under which the 

individuals can act by enabling or disabling certain behavior. The resulting artificial society becomes the common 

model for experts from all relevant disciplines. 

We developed an artificial society for the evaluation of health policies regarding the opioid crises to demonstrate this 

capability. The resulting simulation has more than 500,000 agents in 250,000 households plus additional infrastructure 

components. We use this use case as an example for the application of this new class of computational decision support 

tools for multi-criteria, multi-value decisions in complex domains.    
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INTRODUCTION  

 

In their foundational paper on policy evaluation using simulation, Gilbert et al. (2018) state that “where the costs or 

risks associated with a policy change are high, and the context is complex, it is not only common sense to use policy 

modeling to inform decision making, but it would be unethical not to.” However, few publications address the issue 

in a way that addresses all the issues policy makers are faced with, such as the following: 

 

• Complexity is changing the rules of evaluation and optimization. Complex problems are no longer solvable 

by applying methods based on reductionism and may even require an approach beyond systems thinking, 

particularly when emergent behavior results from complexity (Diallo et al., 2018). 

• Focusing on a single point optimized solution is not necessarily the best option, as the system is changing 

through adaption by individuals towards better solutions, which results in “dancing landscapes” (Page, 2009), 

so that robust solutions are preferred. 

• Additionally, decisions in complex systems have side effects that may quickly become as important as the 

intended effects. Addressing them in the decision process requires multiple criteria decisions as well as 

multiple objective decisions. Supporting methods recently have been compiled in Ezell et al. (2021). 

• Many policy decisions will touch multiple expert domains, so that cross-disciplinary approaches are needed. 

Experts from these various domains must be brought together to contribute to the formulation of the model 

to be used for the computational decision support activity (Tolk et al., 2021a). 

 

Policies intended to address such complex problems are therefore in danger to become predominantly reactive, ad 

hoc, and narrowly focused on treating consequences rather than the root causes and interconnected structural factors 

that drive the issue. To avoid this, the computational decision support tool must take the complexity into account and 

provide realistic prognosis based on the inputs of experts from relevant disciplines. The computational decision 

support tool must represent the policy relevant heterogeneous components and their relations, including information 

that can be exchanged, and the individuals need to be placed in a situated synthetic environment that represents 

relevant constraints. All this needs to be instantiated with realistic data describing the problem domain. 

 

Artificial societies deliver the required capabilities for policy evaluation.  They advance the agent-based modeling 

paradigm by using social science research to integrate human and social factors, utilizing three main components: 

 

(1) individual agents reflecting demographics and attributes of interest,  

(2) the situated environment with its infrastructure and social determinants, and  

(3) the social networks in which an individual is engaged. 

 

To evaluate a policy, it is implemented as a set of regulating constraints under which the individuals can act by 

enabling or disabling certain behavior. Agent behaviors are derived from subject matter expert inputs. Agents may 

choose to ignore guidelines and constraints, and the social groups they are embedded in may support such behavior. 

The resulting artificial society becomes the common model for experts from all relevant disciplines, allowing to 

provide input and compare the heterogeneous views and metrics (Tolk et al., 2018). This paper describes the 

components of an artificial society when being used as the core of a computational decision support tool for the 

evaluation of policies. We also provide an example from the healthcare domain demonstrating the feasibility of the 

proposed framework. 
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A FRAMEWORK FOR A COMPUTATIONAL DECISION SUPPORT TOOL ENABLING POLICY 

EVALUATION 

 

The artificial society simulation described builds the core of the framework. However, to be useful, the simulation 

must be embedded into a framework that helps obtain the required data, including preparing these data for use in the 

simulation. The framework also supports conducting the experiments and presenting the results to the decision maker. 

Within this section, we will first discuss artificial societies in more detail, then describe the types of data needed to 

instantiate and calibrate an artificial society, next we will discuss how we handle the design of experiments, and then 

look at the presentation of results. 

 

Artificial Societies 

 

The use of the agent-based paradigm in the domain of computational social science is well established (Epstein & 

Axtell, 1996) and was only recently reemphasized in (Davis et al., 2019). In their call for action to the community of 

artificial societies and social simulation experts, Squazzoni and colleagues emphasized the need to integrate human 

and social behavior into computational support models when addressing the COVID-19 pandemic (Squazzoni, et al., 

2020). Several leading research institutions provided such support, like the Argonne National Laboratory (Ozik et al., 

2021) or the Center on Social and Economic Dynamics at the Brookings Institution (Parker & Epstein, 2011), just to 

name two examples. Figure 1 shows the three characteristics of artificial societies that will be explained in this section. 

 

 

 

Figure 1: Artificial Societies with their individuals in their social networks within the situated environment 

One of the characteristic attributes of artificial societies is that the individuals are socially capable agents. They are 

embedded into social groups, such as families, friends, work colleagues, etc., and take the inputs from and the values 

of these group into account when making decisions. The rules they follow are not only engineering based but are 

modeled using insight and guidance from the Humanities and Social Sciences. The characteristic attributes of 

individuals are captured as states within the representing agents. Depending on the problem domain, additional 

information important for an individual needs to be stored as well, as these support the decision process for the 

individual. They also have memories that guide their decisions. 

 

The individuals can belong to multiple social groups or social networks with different, maybe even conflicting values, 

so that the decision-making process of agents can become a multi-criterion, multi-objective challenge itself. These 

social connections can be pivotal for many decisions and state changes. If an event occurs that is negative for an 

individual, being in a strong group that provides support can save an individual from making a choice with further 

negative consequence, e.g., having access to “life coaches” can help to stay on course. They are represented as dashed 

lines grouping individuals into various groups. 
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Finally, they are embedded into a synthetic situated environment, which provides hard constraints – such as physical 

barriers as well as access or lack thereof to needed resources – as well as soft constraints – such as norms and values, 

including existing policies and guidelines. Soft constraints can be ignored by the individuals, e.g., if they had bad prior 

experiences following a similar guideline or following a guideline from the same group of policy makers, or if they 

are part of a group that is opposed to these guidelines. The environment may also contain social environmental 

determinants that are important for the policy domain of interest, such as social determinants of health as exemplified 

by Mahamoud et al. (2013). 

 

Data for Artificial Societies 

 

To trust simulation results, not only good algorithms are needed, but the necessary data needs to be obtainable and 

aligned with the simulation assumptions as well. Artificial societies require a high variety of data. The first set of data 

needs to populate the characteristic attributes of individuals. As these individuals are socially capable agents, they 

need data capturing the general as well as the individual social behavior. As societies are home for many activities, 

the individual participants in such activities need to be defined, such as when and where people go to work, using 

what kind of transportation. Which schools or universities are attended by which students? Which shops are in the 

neighborhood providing which services, and who is using these services? When obtaining these data, there are two 

general challenges: 

 

• The data are distributed over many heterogeneous data sources, which are not necessarily well aligned. They 

may differ in scope, resolution, and structure, requiring not only simple mapping, but often transformations 

of data into aggregates or disaggregating data, etc. The classic approaches of federated schemata can help, 

see, among others, Heimbigner and McLeod (1985). 

• It is often necessary to augment real-world data with synthetic data. First, some data are not publicly 

available, too costly, or for other practical reasons not obtainable. If such data are needed for the simulation, 

synthetic data serves as a substitute. Second, the use of personal data is constrained by a variety of data laws 

and regulations, e.g., when data are part of Personal Identifying Information (PII), often making their use 

impractical. Third, the use of synthetic data allows for the generation of unobserved but still scientifically 

interesting constellations and initialization. The mathematical background and additional information are 

provided in Raghunathan (2021). 

 

While finding the data needed to instantiate and calibrate the individuals is already challenging, the data for social 

networks and the behavior of agents representing the individuals is even harder to obtain. Often, the expertise of 

subject matter experts from the relevant domain is the only way to get these data. Sometimes, extensive literature 

research supported by artificial intelligence methods can lead to the generation of applicable rules and/or state changes 

based on peer reviewed documentation of specific knowledge. In addition, scripts and schedules triggering behavior 

like going to work, going to the mall, or visiting friends can be applied as well. 

 

Validating the resulting instantiated and calibrated models is a challenging task, as the number of free parameters can 

easily become overwhelming. Troitzsch (2004) recommends a stepwise approach for calibration and validation of 

agent-based models applicable to artificial societies as well, starting with general questions in a prototypical setting 

to gain an understanding of the behavior and sensibility of the model. The focus of this first step lies on ensuring that 

the structure of the model is correct. Next, the simulation should be set in an empirical setting to reproduce observed 

behavior of the real system. The focus lies on calibrating the model by identifying appropriate parameter 

constellations. Lastly, the model can be applied to make predictions. Windrum, Fagiolo, and Moneta (2007) provide 

an overview of additionally applicable empirical validation methods, although research is ongoing. 

 

While using simulation methods to address complex situations we learned that we cannot simulate what exactly will 

happen, but that we are still able to simulate what may happen in form of trends. In this context, trust in the simulation 

(Harper et al., 2021) and plausability of the approaches are often more important than the application of traditional 

validation methods as they grew outo fo the physics-based modeling realm. As a matter of practicality, engaging 

policy and decision makers as team members in the development of models and simulations rather than using these 

models only as means to generate reports for them, is good practice. Rouse and Serban (2014) observe that engaging 

decision makers in this development process results in them trusting the model more. The models become an integral 

part of the decision process, they are no longer just another tool. 
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Design of Experiments under Complexity 

 

Complex problem situations are characterized by heterogeneous components that are interrelated in various, often 

highly non-linear ways, including feedback loops. Unexpected and sometimes even counterintuitive properties can 

emerge, resulting in likely unintended consequences. Additionally, side effects can lead to counter-developments 

negating the positive effects of policy choices. 

 

As collecting all necessary data is not always possible, many model choices will depend on subject matter expert 

inputs and estimates rather than on empirical observations. The more complex a challenge is, the more experts from 

multiple disciplines are needed within the team to solve it. Page (2008) makes a strong argument that solving complex 

challenges requires diversity of opinions and methods. However, the experts in such diverse teams may not agree on 

values or value distribution for characteristic attributes, and they may even disagree on which attributes are truly 

characteristic. There will be disagreement on the effects of certain activities, the measures of merit and related metrics 

to be used to define success, and even the conceptual model underlying the artificial society itself may be subject of 

discussion. Within operations research, this class of challenges is called deep uncertainty, and the method to address 

those uncertainties is exploratory modeling and analysis (Kwakkel & Pruyt, 2013). Recommendations for process 

management of such multidisciplinary teams is given by Shults and Wildman (2020). 

 

Extending the ideas presented by Tolk (2016), conducting sensitivity analysis is necessary, but not sufficient. Instead, 

an understanding of the topological structure of the solution space is needed, addressing the stability of the solution 

space even under adoption of new rules and behavior. It is pivotal to understand where the landscape is stable, and 

where it is going to “dance” as described by Page (2009). Exploratory modeling and analysis support this by not only 

modifying the free parameters, but all parameters as well as alternative structures. Even if certain rules cannot be 

validated by empirical observations, this approach allows us to understand how different behavior patterns will 

influence the result of the policy, understanding under which parameters the solution remains stable. The workbench 

described by Kwakkel (2017) provides a structure allowing us to plan for exploratory modeling and analysis. 

 

Presentation of Results 

 

Artificial societies provide a multitude of data under uncertainty. These data need to be presented to the decision 

maker in an understandable and actionable form. To make the insights of the simulation applicable for decision 

makers, they must clearly understand policy levers representing various policies and alternatives. Rouse (2021) 

proposes making the system immersive and interactive to become the “flight simulator for decision makers.” Haberlin 

and Page (2022) describe the use of large-scale, highly configurable visualization facilities. Placing the decision maker 

into such an interactive and immersive display results in understanding the solution space better and even experiencing 

possible effects and side effects of policies. 

 

The use of dashboards, as they are used by decision makers to visualize real-world data for situational and option 

awareness, should be part of these presentations. But dashboards often fall short of visualizing uncertainties. These 

uncertainties are a vital part of the insights that can be provided using artificial societies, requiring us to augment the 

dashboards accordingly. Visual representation of uncertainties is a topic of ongoing research and requires that we 

continue to follow developments for the best support of communication of uncertainties and related risks to the 

decision maker. 

 

AN EXAMPLE FROM THE HEALTHCARE DOMAIN 

 

The following example has been presented at the Annual Research Meeting of the Academy Health (Tolk, et al., 

2021b) and has been extended to allow broader applicability since then. We first present the use case followed by 

recent technological advances that address the challenges discussed in the first part of this paper. 

 

Use Case: COVID-19 Policy Effects on the Opioid Crises in Washington, D.C. 

 

In an internal research and development project, our team implemented an artificial society to evaluate policy effects 

on the opioid crises. The motivation for this effort, which started in 2019, is that every day more than 100 Americans 

die after overdosing on opioids. The total economic burden of prescription opioid misuse in the United States alone is 
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$78.5 billion a year (Florence et al., 2016). These issues have only been exacerbated by the current pandemic. As the 

Capital region provides good access to data needed to describe the problem domain, Washington, D.C., was chosen 

as the example region for this research effort. 

 

The initial artificial society represents a subset of the individuals, households, and neighborhood attributes of the 

residents of Washington, D.C. The society represents the 169 census tracts and the eight wards of the District of 

Columbia. The main sources used to generate the individual and household agents, as well as their school and 

workplace locations, were RTI International’s 2010 U.S. Synthetic Household PopulationTM Database (Wheaton, 

2012) and SyntheaTM (Walonoski, et al., 2018), a MITRE-developed open-source synthetic patient generator, which 

provided information on health records for synthetic individuals. These synthetic data sources were augmented with 

publicly available data sources, including the U.S. Census Bureau’s American Community Survey (ACS); the U.S. 

Department of Health & Human Services’ National Survey on Drug Use and Health (NSDUH); the Center for Disease 

Control and Prevention’s (CDC) Social Vulnerability Index; and Pew Research Center’s Religious Landscape Study. 

The resulting data are realistic and reflect the demography without giving private data away or violating other data 

rights. 

 

The main characteristics of interest regarding the evaluation of effects of policies are the health states and social states 

the individuals are in. For opioid misuse, the literature survey resulted in five individual health states of interest: 

susceptible, opioid misuse, recovery, overdosed, and deceased. State changes are triggered by events that happen in 

the artificial society. Examples are the loss of a partner or job, but health-related events, such as sickness and pain, 

can lead to a state change as well. The likelihood of a state change is influenced by individual characteristics, social 

determinants of the environment, and characteristics of the social networks. These characteristics make up the social 

states an individual is in. 

 

All modeled states, their transitions, and influencing factors are motivated by a literature review based on artificial 

intelligence extraction of these information (Source: https://curismeditor.co). We scanned 40 million research articles 

on substance abuse using the following search queries: “Dynamics of Substance Addiction and Recovery,” “Dynamics 

of Opioid Addiction and Recovery,” “Probability of Drug Addiction Recovery,” “Opioid Addiction Peer Recovery 

Coaches,” “Mathematical Models of Addiction,” and “Markov Models of Disease Stages.” Three journals appeared 

most frequently – Harm Reduction Journal, International Journal of Mental Health System’s, and BMC Psychiatry – 

resulting in 250 highly vetted articles to identify research justifying our attributes, parameters, and state change 

options. 

 

These articles supported identifying the relevant status information an individual may be in, but they did not support 

deriving transition probabilities between them, as the conditions for each study captured in the literature are rather 

disparate. Transition probabilities are an example of important attributes that require subject matter expert inputs and 

must be evaluated via exploratory modeling and analysis. In this use case, interviews with internal experts that were 

followed by an extended sensitivity analysis in the calibration phase determined the transition probabilities. The 

process followed the recommendations of Troitzsch (2004): The literature search determined the individual behavior, 

and the calibration steps ensured explainable behavior in groups that step-by-step grow up into the artificial society. 

 

These steps resulted in the attributes required as well as state change probabilities that were developed in workshops 

with team members and implemented as an agent-based model within a situated synthetic environment. While most 

healthcare-related publications recognize the importance of the social determinants of health (SDOH) on opioid 

misuse, our literature review revealed that social networks (such as family, peers and friends, co-workers, and service 

providers, including social services, and law enforcement) are often just as important. We therefore reflected the 

SDOH in the situated environment for the agents and the social networks as relations between the agents. 

 

The initial experiments instantiated slightly more than 5,000 individuals in approximately 2,500 households. They 

were configured and calibrated so that the artificial society represent proportionally the citizens of the eight wards of 

Washington, D.C. Based on the available data described above, a base policy was instantiated regulating the contact 

rate within social networks that reflected the situation of 2017, in which social support groups can be active but they 

are highly dependent on the social determinants. The D.C. Government’s Opioid Dashboard provided the number of 

opioid-related emergency room visits and deaths. The calibration ensured that the number of agents observed reflected 

the expected number when compared with the empirical data captured in the D.C. Government’s Opioid Dashboard. 

Once the calibration was done, two alternative policies were implemented, resulting in three simulation experiments. 
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• The results from the calibration provided the base case, reflecting the pre-pandemic state.  

• The first alternative mirrored the situation of a lockdown, like that of the 2020 pandemic: no social contacts 

were supported. 

• The second alternative increased the number of support groups in all wards. Social workers and support 

groups were increased. 

 

The effects of the three policies can be compared via the simulation shown in Figure 2, in which we see the effect of 

absence (left side), presence (middle), and active support (right) from social networks on the proportion of the 

population experiencing opioid misuse in each ward. 

 

 

Figure 2: Simulation results showing effects of absence (left), presence (middle), and active support (right) from social 

networks 

These results are not precise forecasts but show a trend. Nonetheless, they predict a significant increase of opioid 

misuse with the lack of social support groups, and a substantial decrease when such groups are supported. Such 

predictions were only possible due to the modeling of social networks as the third pillar beside individual parameters 

and social determinants of the situated environment. It also shows the potential to make decision makers aware of 

possible unintended consequences that now can be taken into consideration before they are observed in the real world 

once the policy is set in place in such a multifaceted and complex environment. In this use case, the prediction of an 

increase of opioid misuse under the circumstances of lockdowns was observed in reality as well (Mason et al., 2021). 

 

Ongoing Technical Improvements 

 

As the initial work showed the feasibility and value of the approach, the artificial society was technically improved. 

Also, the framework supporting the use was enhanced and transformed to open-source solutions as follows. 

 

• The simulation engine was transitioned to Repast High Performance Computing (HPC), generating a fork of 

the original Argonne National Laboratory engine accessible via https://github.com/Repast/repast.hpc. This 

allowed us to grow the number of simulated entities significantly. 

• The artificial society used the core of chiSIM (Macal, Collier, Ozik, Tatara, & Murphy, 2018), transitioned 

it from Chicago, IL, to Washington, DC, which resulted in communitySIM. In addition to changing the 

geospatial part, additional functionality was included as identified in the initial research work. 

• Using the Apache family of open standards, the presentation of the results was moved into a configurable 

experience layer. Apache Kafka (https://kafka.apache.org/), Apache Druid (https://druid.apache.org/), and 

Apache Superset (https://superset.apache.org/) allow for streaming the data as needed, using a distributed 

data store, which now can be explored and visualized as requested by the decision maker. 

• Finally, using the open-source containerization platform Docker (https://www.docker.com/) allows us to 

deploy these solutions to a variety of target platforms. 

 

Figure 3 shows the resulting and currently used configuration: on the left side, the necessary data are obtained and 

prepared to be used in the simulation; the artificial society in the middle allows to create numerical insights into the 

dynamics of the artificial society; and the right side provides tool for the visualization of the results in an immersive 

and interactive form. 

 

https://github.com/Repast/repast.hpc
https://kafka.apache.org/
https://druid.apache.org/
https://superset.apache.org/
https://www.docker.com/
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Figure 3: The artificial society within the framework of the computational decision support tool 

The current computational decision support tool can use high-performance computers as well as personal computers. 

It currently supports the simulation of more than 560,000 individuals in 260,000 households, 200 schools, and 50,000 

workplaces. It reflects the demographic and economic structure of the target population. 

 

SUMMARY AND DISCUSSION 

 

Policy and decision makers need computational decision support to better understand the complexity of the 

environment that they are working in, and respectively, the effects and side effects their policy decisions will have. 

The vast number of heterogeneous entities interrelated via multiple non-linear connections and feedback loops require 

adding new methods to the toolset utilized by decision makers so far. Artificial societies embedded into a data analytics 

framework that obtains and visualizes the data and supports design of experiments to address deep uncertainties 

support these methods. Policy effects in such environments are usually multifaceted, and many side effects may result 

in unintended consequences. Artificial societies can help us become aware of such effects early on and avoid them. 

The use case presented provides one example to demonstrate this capability. The technical improvements presented 

in this paper result in a capability that can help evaluate communities with more than 500,000 members, but the data 

challenge to initialize and calibrate such a solution can become enormous as well. 

 

Depending on the research question of interest, data may have to be obtained from so many unaligned databases that 

manual mapping or the application of ad hoc heuristics are no longer feasible. Initial research on this topic, including 

aligning of real world and synthetic data, has been conducted, but more is needed. Furthermore, the application of 

exploratory modeling and analysis also increases the amount of data making up the results, so that it may become 

necessary to apply additional data analytics here as well. 

 

As discussed earlier, artificial societies have been successfully applied in several domains. However, so far, the various 

applications were individual developments. With the increasing use, the question arises to what degree a common core 

capability may serve as a rapid start to different questions. Is the number of common attributes and entities in various 

applications sufficient to justify a common core, or is it more economic to develop a new system from scratch? 

Preliminary observations tend to suggest that particularly when a common open-source approach is utilized, as 

described in the technical improvement section, the use of a common core increases the productivity of teams, as they 

can focus earlier on problem domain research. 

 

As discussed in (Diallo et al., 2018), complexity exists in the real world and must be understood by the decision 

makers. It is of little value trying to reduce the complexity within a solution that then no longer provides applicable 

advice for the original real-world problem which started the request for support. Within this paper, the use of artificial 
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societies is motivated to better understand and govern complexity, allowing us to evaluate policy decision making 

under such complexity and deep uncertainty. 
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