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ABSTRACT 

 

The research presented here builds on an existing multi-domain robotic teammate framework by exploring the bilateral 

nature of Human Machine Team (HMT) trust to optimize mission outcomes in a Mosaic-like warfare paradigm. 

Currently, the scientific community is focusing on measuring human trust with synthetic agent teammates, and the 

importance of building and sustaining well-calibrated trust to promote HMT interactions necessary for successful 

mission outcomes. Measuring trust objectively and in real time is a difficult problem, and solving it is essential to 

support a future warfare requiring rapidly reconfigurable multi-platform HMTs to address the mounting challenges of 

peer threats. However, the time sensitive nature of these reconfigurable, multi-domain, multi-platform kill webs 

assumes reliance on synthetic agents, driven by sophisticated Artificial Intelligence (AI), to make split-second 

decisions on how best to configure and reconfigure these kill webs. Those critical decisions will necessarily need to 

take into consideration the extent to which a synthetic agent can trust a human operator’s ability to complete mission 

tasks. This paper explores and defines HMT relationships across synthetic agents’ personas within our existing multi-

domain robotic teammate framework to (a) identify human’s psychophysiological constraints across HMTs that can 

impact the synthetic agent’s trust in humans, and (b) promote the concept of a synthetic Mosaic agent that uses trust 

to rapidly assign tasks across HMTs to optimize mission outcomes.  Theoretical findings are presented within an anti-

satellite strike and response applied use case to highlight the bilateral nature of trust in HMTs as a key enabler of 

mission success.  
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INTRODUCTION 

 

With the Artificial Intelligence (AI) revolution well 

under way (e.g., Makridakis, 2017; Walsh, 2017) 

there is a renewed urgency to augment AI-driven 

synthetic agents’ capabilities to support the 

development of highly effective Human-Machine 

Teams (HMT). The urgency is driven in part by 

future warfare demands (see Figure 1) to meet and 

defeat peer and near-peer threats (e.g., Bornstein, 

2015), and the need to solve complex communication 

and collaborative problems that arise from teams 

composed of both human operators and synthetic 

agents (e.g., Scielzo and Kocak, 2021). As a result, a 

massive multi-disciplinary undertaking has begun 

across the scientific community to rapidly frame 

HMT’s Research & Development frameworks, guidelines, and requirements necessary to yield validated technologies 

that translate to the operational environment (see National Academies of Sciences, Engineering, and Medicine, 2021). 

 

The concept of trust as a complex socio-affective construct is rapidly becoming one of the foundational factors driving 

HMT dynamics (e.g., Scielzo and Kocak 2021, Scielzo and Kocak, 2020). If HMTs are to be truly effective, it is 

paramount to capture key characteristics of high-efficiency human-human teams, such as trust, and translate them to 

HMTs. This paper extends our multidomain HMT framework by exploring the concept of bilateral trust whereby not 

only it is critical to gauge human trust in synthetic agent teammates, but it is also imperative to digitize trust so that a 

synthetic agent can ascribe its own level of trust in a human operator when the agent is relied upon to make split-

second decisions aimed to increase the probability of mission success.  

 

To achieve this aim, we review the accelerating paradigm shift transforming automation from a tool to teammate status 

and detail key aspects of HMT trust within the context of future warfare. A description of our current multidomain 

HMT framework is then provided, outlining key factors and processes to model, maintain, and facilitate HMT trust. 

Finally, a taxonomy of synthetic agents is presented, underlining the bilateral nature of trust that is required to achieve 

mission goals. Theoretical implications of the bilateral nature of HMT trust are then explored within a future warfare 

anti-satellite strike and response scenario. 

 

From Tools to Teammates 

 

The current pace of technological advancement is affording a dramatic change in the way we operate and perceive 

synthetic agents by augmenting the level of decision-making these synthetic agents can make, thereby operating in a 

realm traditionally relegated to humans’ cognitive capabilities. In fact, synthetic agents are increasingly able to sense, 

decide and act like a human. Recently, an AI-driven synthetic agent defeated an expert human pilot in a dogfight using 

human mental heuristics (e.g., Hitchens, 2020). Thus, the relationship between humans and synthetic agents is rapidly 

changing from a rigid and outdated model where humans and synthetic agents perform discrete tasks across different 

levels of automation, to a model where both humans and synthetic agents work as a team to accomplish mission 

objectives (e.g., Scielzo, Fiore, Jentsch, and Finkelstein, 2006). As a result, we are moving away from machines seen 

Figure 1. Trust in Human-Machine Teams 
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as subordinates and tools that support human operators to a paradigm where humans and synthetic agents work 

collaboratively as peers to meet mission objectives, and where trust plays a foundational role (e.g., Scielzo and Kocak, 

2021).  

 

Human-Machine Teaming and Trust 

 

Traditionally, the concept of trust between a human operator and a machine was described in terms of trust in 

automation across levels of task control. This field of inquiry has existed for decades, led by human factors scientists, 

and culminating in taxonomies describing the various levels of automation across human information processing and 

decision-making stages (e.g., Endsley and Kaber, 1999). Applying these taxonomies resulted in the development of 

systems that could minimize human error while maximizing trust and situation awareness by promoting appropriate 

levels of automation and keeping human operators in the loop (e.g., Kaber, and Endsley, 2004). 

 

However, HMT trust is far more intricate given the complex team dynamics at play. As a result, HMT trust needs to 

be viewed similarly to trust in a human-human team. From a social science standpoint, trust suggests the willingness 

to depend on someone else or to be vulnerable (e.g., Mayer et al., 1995; McKnight et al., 1998), and to cooperate as a 

way to manage risks and uncertainty in a team (e.g., Gambetta, 1988; Jones & George, 1998). Thus, team trust mostly 

rests on the extent to which team members can meet each other’s evolving expectations as shared experiences among 

teammates accumulate. These expectations largely fall under behavioral observations across team dynamics such as 

communication, collaboration, context awareness, and team performance. As a result, building and sustaining trust 

between human and synthetic agents based on these observations becomes foundational to HMT operations. 

 

Future Warfare and Human-Machine Teams 

 

The rapidly accelerating shift towards future warfare paradigms, such as the Defense Advanced Research Projects 

Agency (DARPA) Mosaic warfare, is driving the need for high-performance HMTs. For example, with DARPA’s 

Mosaic warfare, adaptive kill webs are composed of 

rapidly reconfigurable human operated and AI-

driven automated platforms that can work 

collaboratively as a team (e.g., Grayson, 2018). 

Figure 2 illustrates part of the Mosaic warfare 

paradigm, showing the required interconnectedness 

between sensors and shooters. To reach that desired 

end state of highly effective HMTs, proper 

multidomain frameworks need to be in place to 

develop and validate next generation HMT 

technologies. Such a framework was introduced by 

Scielzo and Kocak (2021), which provided critical 

guidelines to build, sustain, and maintain well-

calibrated HMT trust.  

 

Figure 3 shows the main factors associated with human operator 

trust calibration, which are dispositional trust, situational trust, and 

learned trust. Dispositional trust indicates individuals’ 

predispositions to trust machines (i.e., their biases). Situational 

trust is more intrinsic to an operational environment, which 

considers external variability factors (e.g., system complexity, task 

difficulty, weather impact) and internal variability factors (e.g., 

level of expertise). Finally, learned trust reflects how trust changes 

over time based accumulated experiences and observations. A 

failure to properly calibrate HMT trust invariably leads to either 

overtrust (i.e., human trust exceeds synthetic agents’ capabilities) 

or distrust (i.e., lack of human trust prevents full use of synthetic 

agents’ capabilities) (e.g., Lee and See, 2004).  

 

Figure 2. Connecting All Sensors to All Shooters 

Figure 3. HMT Trust Calibration Factors 
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From the standpoint of the synthetic agent, AI-driven machines need also to be able to quantify trust in human 

operators, or “synthetic trust,” allowing them to express level of confidence of the actions and behaviors of their 

human teammates. In fact, the Department of Defense (DoD) Communities of Interest (CoI) are outlining key areas 

of investigation in automation, such as machine perception, reasoning, and intelligence to endow synthetic agents with 

“existence, intent, relationships and understanding in the battle space relative to a mission” (Bornstein, 2015).  The 

process to achieve synthetic trust is analogous to how humans form trust—a process laid out in our multidomain HMT 

framework. 

 

 

A MULTIDOMAIN HUMAN-MACHINE TEAMING FRAMEWORK 

 

The multi-domain HMT framework presented here (Figure 4) represents an abridged version from previously 

published work (see Scielzo and Kocak, 2021) and juxtaposes selected HMT guidelines. This framework provides the 

basis for assessing, calibrating, and maintaining trust over time via domain-specific Man-Machine Interfaces (MMI) 

aimed to support team coordination between humans and synthetic agents. This HMT framework emphasizes three 

principal components: (1) modeling trust to guide the development of domain-specific objective measures of HMT 

trust; (2) Maintaining optimal trust by quantifying HMT shared situation awareness (SSA) needs and corresponding 

adaptive displays; and (3) facilitating trust via robust multimodal interfaces to promote HMT communication and 

coordination. Each of these components is reviewed in turn. 

 

 
Figure 4. Abridged Multidomain HMT Framework with Selected Guidelines 

Modeling Trust 

 

Modeling trust assumes the ability to measure in real time the construct of trust, directly or indirectly (e.g., Harrivel 

et al., 2017). Measuring HMT trust automatically is necessary to inform next generation machine-driven AI level of 

transparency into its decision-making process, and to mediate the level of MMI information displayed. This is possible 

thanks to advances in the unobtrusive use of biometric sensors and the development of corresponding Machine 

Learning (ML) classifiers to assess with high accuracy both cognitive and affective constructs (e.g., Scielzo et al., 

2020; Wilson, Nair, Scielzo, and Larson, 2021; Wilson et al., 2020).  

 

Modeling trust adopts an input/throughput/output model. Input to the model begins with determining the domain at 

hand and its user roles to determine the type of biometric sensors that can be used to measure HMT trust. For example, 

while the air domain can allow multiple in-cockpit biometrics sensors, this is not the case with domains that have 

significant constraints, such as the undersea domain. As a result, biometric sensor selection is both domain and use-
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case dependent. When biometric sensor data is accurately mapped to operational demands, trust modeling can be 

generated via ML. 

 

The outputs are HMT trust indices which can be either performance-based or affective-based. An example is the 

operator crosscheck ratio as a performance-based indicator of trust, determined the ratio of the operator’s visual gaze 

fixations between primary task MMI elements and synthetic agent controlled MMI elements. Affective-based trust 

metrics can be derived by prosody (pitch, intensity) and other affective constructs (stress, frustration). 

 

Maintaining Trust 

 

Real time HMT trust indices’ primary role is to drive adaptive MMIs. Moreover, to build, calibrate, and maintain 

HMT trust, it is key to capture and quantify the team’s goals and decision points, which would also drive the 

reconfigurable and adaptive aspect of MMI (i.e., presenting context and time sensitive information to support team 

decision making). The construct of shared SA, defined as “the degree to which team members possess the same SA 

on shared SA requirements” (Endsley & Jones, 2001, p. 48), is needed to define shared informational requirements 

needed for HMTs to accomplish individual and shared tasks. This method has been effectively used in many domains, 

from Army Brigades (e.g., Bolstad et al., 2002) to maritime operations (e.g., Sharma et al., 2019). Overall, shared SA 

exposes HMT requirements common and unique across team members. Thus, shared SA displays’ adaptivity can be 

driven by HMT’s goal structures. Together with real time trust indices, next generation MMIs can be developed to 

promote both HMT trust and shared SA. 

 

Facilitating Trust 

 

Facilitating trust and overall HMT communication and coordination needs to occur via robust multimodal MMIs 

tailored to vehicle, operational, and domain constraints. In addition, to support HMT interactions and decision making 

it is necessary to adopt emerging AI capabilities such as conversational AI, transparency AI (XAI), or neuro-symbolic 

AI. Conversational AI allows for effective exchange of information and the synthetic agent’s responses can be tailored 

based communications history to increase trust. Finally, XAI and neuro-symbolic AI are critical to support transparent 

decision-making across HMTs. For example, XAI capabilities are designed to support AI transparency across the 

Observe, Orient, Decide, and Act (OODA) decision making continuum (e.g., Angerman, 2004, Scielzo and Kocak, 

2021) and allow human operators to remain in the loop and support team decisions, thereby increasing overall trust. 

 

 

HUMANS AS SYNTHETIC AGENTS’ TEAMMATES 

 

This paper thus far introduced the concept of HMT trust, its importance to support future warfare needs, and a 

framework to develop and validate next generation HMT technologies that can build and maintain HMT trust. 

However, the focus was predominantly on human operators and their need for appropriately trusting synthetic agents. 

This section of the paper introduces and explores the concept of “synthetic trust,” where the construct of trust is 

digitized so a synthetic agent can quantify its own level of trust in human operators.  Thus, a synthetic agent teammate 

would consider its own trust towards other human operators in its team, which can be critical to make appropriate 

split-second decisions to save a human life, asset, or simply to ensure the probability of a successful mission outcome.  

 

The Bilateral Nature of Trust 

 

Although at first glance synthetic trust may be perceived as an unwarranted anthropomorphic ascription of machine 

affective states, the notion of a synthetic agent experiencing trust is essential. It is also imminently achievable given 

the HMT framework presented earlier; This framework outlined methods and processes to quantify trust objectively 

and in real-time. Thus, synthetic trust can be defined as a continuous multivariate algorithmic solution based on both 

real-time and historical observations of contextual and behavioral information.   

 

As described earlier, trust is primarily expressed in terms of dispositional, situational, and learned trust factors. When 

combined, the overall perception of trust can be well calibrated, or, when not properly calibrated, can lead to distrust 

or overtrust. Table 1 provides an overview of how each of these trust factors are defined from both human and synthetic 

agent standpoints. Thus, it is imperative to accurately operationalize each of these factors and leverage the HMT 

framework presented here to develop real-time human and synthetic trust metrics. 
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Table 1. Trust Factors Defined from both Human and Synthetic Agents Standpoints 

Trust Factor Human Standpoint Synthetic Agent Standpoint 

Dispositional Human predispositions to trust machines 

(e.g., cultural biases) 

Synthetic agent predispositions to trust humans 

(e.g., hard coded robotics laws, zero trust 

architectures) 

Situational Trust in the synthetic agent mediated by 

intrinsic elements of an operational 

environment across external (e.g., weather) 

and internal (e.g., expertise) factors 

Trust in the human mediated by intrinsic 

elements of an operational environment across 

external (e.g., sensor data) and internal (e.g., AI 

maturity) factors 

Learned Trust in the synthetic agent changes over time 

based accumulated experiences and 

observations 

Trust in the human that changes over time based 

on historical data and human behavioral 

observations 

Distrust Lack of human trust prevents full use of 

synthetic agents’ capabilities 

Lack of synthetic trust prevents full use of 

human capabilities 

Overtrust Human trust exceeds synthetic agents’ 

capabilities 

Synthetic trust exceeds humans’ capabilities 

 

Finally, synthetic trust must also take into consideration the synthetic agent role and hierarchy within a team. Just as 

human teams have well-defined hierarchies, from small units to teams or teams of teams, the same analogy needs to 

be applied to synthetic agents in terms of taxonomic and hierarchical relations. 

 

A Taxonomy of Synthetic Agents 

 

Based on the information 

presented above, 

Synthetic agents’ roles 

will need to be determined 

and ultimately trained to 

support future Warfighter 

embedded in HMTs.  

Adding these synthetic 

agents, or agents, into the 

targeting process to 

establish kill chains will 

utilize each platform in 

efficient and effective 

ways (see Figure 5). 

This simple taxonomy and organization illustrates the need for specialized synthetic agents, understanding their roles 

and functions. However, this paradigm does not take advantage of the Mosaic warfare concepts of connecting every 

sensor to every shooter.  To break the stovepipe of this tasking paradigm, a new agent must be created and empowered.   

 

The Need for a Mosaic Warfare Synthetic Agent 

 

Enabling mosaic warfare at the Speed-of-the-Fight will require artificial intelligence algorithms to process, sort, and 

evaluate the vast swaths of data coming from every sensor on the battlefield.  This resulting information flow will 

require specialized synthetic agents trained to convert that data into information to feed to the Mosaic warfare synthetic 

agent.  This agent will evaluate the incredible complexities on the battlefield to determine, select, and assign which 

pieces of which platforms to connect to create a web of connected kill-chains.   

 

Figure 5. Taxonomy and Organization of Synthetic Agents with Stove-piped Assignments 
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As part of this new connection 

strategy, the Mosaic agent will be 

required to evaluate every aspect of 

every component of every platform 

currently available in the joint 

operating area.  Many of these 

choices will be straightforward, as 

some platforms will have the 

needed weapon, or the most precise 

sensor, or required dwell time over 

an area.  Less straightforward 

choices involve the evaluation of 

the human who is currently in 

control or command of that 

platform.  Thus, the Mosaic agent 

will need to use real-time 

operational data and historical data 

of previous task assignments and outcomes along with biometric information to correctly select the most trusted 

human to assign to the task. As a result, the Mosaic agent needs to effectively compute its own trust in human-operated 

assets and quantify trust levels for each human’s ability to complete tasks across the main trust factors presented in 

Table 1, especially for situational and learned trust factors.  

 

 

ANTI SATELLITE STRIKE USE-CASE 

 

Synthetic agents that will be trained to support Mosaic warfare must be able to rapidly choose each of the parts of the 

kill chain to assemble into a kill web.  The many pieces composing the kill web allows for best sensor, shooter, and 

sensor-to-shooter selection which will account for varying conditions or states of a platform (e.g., time, distance, fuel, 

weapons, sensors, mission task priorities, etc.). The Mosaic agent can easily and quickly be able to parse through the 

overwhelming data and provide additional confidence or course of action for the human teammate.  In a narrow use 

case, the Mosaic agent may be presented with a choice between two assets that have the same capabilities, the same 

distance from the task, and the same availability.  For these assets, the only differentiator will be the human in the 

cockpit, the Ship’s Captain, or the team leader.   

 

Situation 

 

The following hypothetical situation is proposed (see Figure 7): tensions are 

brewing within the island of Kundu off the coast of California, which is 

divided by two independent nations Qumar (red) and US-backed Averna 

(blue). Qumar and Averna are currently in heated negotiations.  There has been 

a tremendous build-up of military arms along the border and every unit is 

bracing for a misstep by either side that will initiate hostilities.  While a pair 

of Next-Gen Fighter/Bombers maintain patrols along the border, two Expert 

Small Unit Teams have quietly infiltrated into areas to observe a pair of large 

transporter erector launcher (TEL) vehicles that are being raised to fire (see 

Figure 1).  A pair of submarines silently shadow a pair of destroyers, providing 

mutual protection and support to friendly units.   

 

  

Figure 6. Organization of Synthetic Agents with Mosaic Agent Assignments 

Figure 7. Maps of Kundu 
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Friendly units 

 

US forces have an incredibly unique 

confluence of events which resulted 

in exact pairs of aircraft, teams, 

destroyers, and submarines that are 

100% fully mission capable with 

identical weapons, fuel states, 

weapon loads, radars, and all other 

systems.  The only difference is each 

is led, commanded, or flown by a 

different human (see Figure 8). 

 

 

 

 

Enemy units 

 

As illustrated in Figure 9, the enemy forces have a robust Integrated Air Defense Network and terrestrial offensive 

space weapons along the border poised to engage any airborne threats.  They have also placed two transporter 

erector launchers (TELs) close the border to threaten land, sea, and space assets. 

 
Figure 9. Enemy Units 

 

Mission 

 

The mission’s main goal is to be prepared to engage any hostile act, prevent damage to friendly forces, and reduce the 

enemy’s ability to continue an attack on Averna and US assets. 

 

 
Figure 10. Kundu Situation and Agent Choices 

 

Figure 8. Friendly Units 
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Synthetic Trust in Action 

 

Leaning into the portrayals from each of the fictional examples provided in Figures 8 and 10, the Mosaic warfare 

synthetic agent will be required to evaluate each of the choices provided to respond to the imminent threat posed by 

the anti-satellite missile launches.  Maverick is known to be reckless and take chances when the opportunity presents 

itself.  Iceman has a history of flying precisely by the book.  Rogers follows instructions even at great risk to himself.  

Quill has shown that his emotional reactions can overwhelm the desire to stick to the plan.  For each of these, and the 

other examples displayed, the overall trust that the Mosaic agent has in each of them, whether dispositional, situational, 

or learned, will influence the decision about which human to trust (see Table 2).   

 
Table 2. Overall Synthetic Trust 

Human A Agent Trust 

 

Human B Agent Trust 

 

Maverick Low Iceman High 

Rogers High Quill Low 

Krause High James Low 

Ramsey Low Hunter High 

  

Based on the history of each of 

these humans to follow specific 

taskings provided by authorities 

in power, as well as an 

assessment of their 

psychophysiological states along 

with real-time contextual 

information, the Mosaic agent 

assembles the pieces of the kill 

chain to form the team most 

trusted to ensure a positive 

mission outcome.   

 

In this narrow use case, where 

each of the platforms and teams 

were identical in every way 

except for the human leading, 

commanding, or flying, the 

Mosaic warfare synthetic agent 

selected from the options those it 

decided were the best trusted to follow orders to accomplish the task.  Each human followed the Mosaic agent’s orders 

and, in this case, the missiles were shot down, the IADS system was reduced, and the TELs were destroyed. 

 

 

CONCLUSION 

 

This paper leveraged an existing multi-domain robotic teammate framework to explore and define the bilateral nature 

of HMT trust necessary to optimize mission outcomes in future warfare paradigms. First, we have underlined the 

importance of measuring human trust with synthetic agent teammates, and the importance of building and sustaining 

well-calibrated trust to promote HMT interactions necessary for successful mission outcomes. Second, we have 

applied methods and processes aimed at modeling, building, maintaining, and facilitating synthetic agent’s trust, 

thereby providing a path to quantifying trust in humans for synthetic agents. Finally, we have provided a definition 

for synthetic trust, and introduced a taxonomy of synthetic agents by role and function.  A result was identifying the 

need for a hierarchy of synthetic agents, with the introduction of a Mosaic warfare synthetic agent to evaluate synthetic 

trust in available human leaders, commanders, and pilots.  

 

Figure 11. Agent Choices and Engagements 
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Theoretical findings were presented within an anti-satellite strike and response applied use case to further highlight 

the unilateral nature of synthetic trust in humans as a key enabler of mission success within Mosaic warfare. Future 

research needs to (a) support a more precise operationalization of agent trust in humans across trust factors, and (b) 

implement and test these trust factors in a controlled environment. The end goal is to provide a comprehensive 

framework to develop and train synthetic agents within a modeling and simulation environment that allow for human-

in-the-loop testing, resulting in a set of precise requirements for Mosaic warfare synthetic agents utilizing synthetic 

trust with human teammates. 
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