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ABSTRACT 

 
Embracing the latest innovations in data analytics has become critical to compete in both the private and public sectors. 
Unfortunately, the data which yields the most meaningful results is often the most sensitive, introducing a potential 

risk if proper security measures are not taken. Moreover, this data is aggregated in large sums. With the increased use 
of sensitive data, particularly in machine learning applications, advanced data augmentation techniques introduce a 
means by which advanced analytics  can be practiced securely and effectively in sensitive domains. 

 
In this paper, we present two methods –Pseudonymization and Generative Adversarial Networks (GANs)– to de-

identify data and protect the privacy of entities in data at rest on sensitive IT systems for secure use outside those 
systems. The former method is often used to test and optimize code by providing realistic values at the aggregate 
feature level. The latter can be used to train machine learning models and perform statistical analyses by learning the 

underlying distribution of specific observations in a manner that does not compromise the original records. The GANs 
in this study leverage Convolutional Neural Networks  (CNNs) in the traditional arrangement of a generator and a 
discriminator, with a third CNN enforcing the syntactical relationship between features. We test our performance with 

a statistical evaluation of the underlying distributions of the synthetic features against the original feature vectors from 
which they were generated, visualizing high-dimensional relationships between data sets, and comparing supervised 

cross-validation scores on the synthetic data to those of models trained on the real data. Results showed strong 
statistical relationships between real and synthetic features but variable model performance across datasets. 
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INTRODUCTION 
 

Problem Statement 
 
Embracing the latest innovations in data analytics has become critical to compete in both the private and public sectors. 

In the DoD, failing to harness analytics causes the government to trail industry and makes the military vulnerable to 
technologically adept adversaries. Unfortunately, the data which yields the most meaningful results is often the most 
sensitive, introducing potential risk if proper security measures are not taken. The security risks of failing to use 

advanced analytics and failing to observe best security practices are equally unacceptable. With both increased use 
and increased protective measures necessary with sensitive data, other advanced techniques must be employed to 

ensure these methods can be practiced securely and effectively. 
 
At Commander, Navy Reserve Forces Command, strict procedures govern where data can reside at rest based on the 

sensitivity of the information. When the proper technology is available on approved systems, this does not present any 
roadblocks to practicing secure advanced analytics. In practice, however, the latest technology is not always available, 
stunting projects that require the use of sensitive data. Furthermore, as attacks on data systems become more 

sophisticated, so must measures taken to protect the data. Fortunately, there are ways that advanced analytics itself 
can be harnessed to introduce these additional protections. 

 
Traditional methods to protect data may include removing sensitive identifiers (e.g. PII) before randomly scrambling, 
sampling, offsetting, binning, or generalizing the original variables one-by-one. Whereas these methods have varying 

levels of security, all sacrifice aspects of the data that are necessary for critical portions of most analytic pipelines. 
Scrambled features, for example, will maintain the size and individual characteristics of descriptive factors that may 
be used for feature engineering, visualization, and code testing and optimization. They will not, however, preserve 

statistical integrity between records. This means that data subset on any scrambled feature value may lose 
characteristics that would become prevalent under that filter, and machine learning and statistical testing will likely 

produce invalid results. What’s more, randomly replacing or removing sensitive identifiers altogether eliminates 
important information associated with multiple records in the data. 
 

Approach 
 
This paper explores Pseudonymization and a Generative Adversarial Network (GAN) as methods to generate de-

identified datasets that are suitable for analysis while maintaining privacy of the individuals from the original dataset. 
Pseudonymization is easier to deploy, well-researched, and may be used for code architecture, optimization, and 

visualization purposes where only the distribution and structure of the individual variables matter. The specific method 
used in this study includes hashing and salting direct identifiers before replacing all associated features with randomly 
generated values. GANs may be employed where not only feature distributions, but consistency across records is 

necessary. It is also sometimes used when seeking model lift from synthetic data. For the GAN in this study, a 
generative network is used to produce synthetic data which is then evaluated for authenticity by a discriminator and 
classifier trained on a sensitive dataset. 



 
 

 

MODSIM World 2020 

2020 Paper No. 36 Page 4 of 11 

 
Both the Pseudonymization and GAN were deployed on a Navy Reserve dataset derived from the one used in the 

paper “Feature Engineering and Ensemble Machine Learning in the Navy Reserve: Using Holistic Behavioral Profiles 
to Predict Mobilization Cancellation” (Milletich et al., 2019). The descriptive variables in the resulting pseudonymous 
and synthetic datasets were evaluated using the Anderson-Darling test to examine whether each synthetic feature 

maintained the statistical profile of the raw feature from which it was generated. Integrity between observations and 
the viability of the generated data for statistics and machine learning were tested in a series of machine learning 

experiments. Each experiment compared output from either a supervised or manifold learning algorithm trained on 
some subset of real data to that of the same model trained on synthetic data generated from that subset. Results show 
that while all individual features maintained their statistical profile in the synthetic data across experiments, output 

from models trained on synthetic data did not match that of models trained on original data. Each synthetic dataset 
did, however, possess useful properties that, when considered as a collective, satisfy most modeling needs without the 
necessity of raw data. Additionally, further tests on the synthetic features suggest that the GAN has a tendency to 

overfit by epoch, which may possibly be corrected with minimal adjustments to the model. 
 

LITERATURE REVIEW 
 
Many organizations use large datasets containing personally identifiable information (PII) which needs to be 

removed or obscured to protect an individual’s privacy. A simple method of removing PII is to suppress features 
such as names, birthdates, or identification numbers by either removing them from the dataset or grouping them in a 
way that obscures individuals (Kelly, et al, 1992). The goal of these methods is to achieve k-anonymity, where 

individuals are obscured amongst at least k individuals, making reidentification more difficult. One drawback to 
suppression is the loss of usable data and the reduction of detail, leading to less precise predictions. Also, depending 

on the size of the population in the dataset, grouping attributes can still lead to identification of individuals or reveal 
information about an individual that would be considered private (Zayatz, et al, 2009). If the dataset lists the average 
salary of plumbers in a small town, and k-anonymity has been achieved, but every plumber works for the same 

company, then private financial information about that company has been inadvertently revealed causing 
information leakage. Information leakage is a serious problem, and it is a growing concern as the amount of data 
collected by companies and government agencies increases. 
 
The need for highly granular data combined with the need for security has led to  improved methods of obscuring 

data points through the addition of noise, adding offsets, or swapping values (Giessing, 2004, June). These methods 
of adding static to a data set may effectively obscure sensitive information, but security is exchanged for usefulness 
(Lubarsky, 2010). Finding the balance between security and utility can prove especially difficult  for complex data 

types such as dates or locations (Garfinkel, 2015). The perturbation required to mitigate re-identification attacks can 
obscure the data and lead researchers to draw false conclusions. Pseudonymization replaces values with randomly 
generated pseudonyms, obscuring datapoints without suppression or loss of granularity (Corrales Compagnucci, 

2019). The possibility of reidentification through reverse engineering the pseudonymization algorithm can be further 
complicated by using a secret key. However, reidentification is still possible when the dataset is compared to 

information which intersects the data at some point through non-direct identifiers (Lubarsky, 2010). The 
vulnerability of de-identified datasets has been proven again and again. Datapoints obscured using 
pseudonymization and other methods still represent personal information. This one-to-one relationship can be 

exploited to discover individuals, or even reverse engineer the algorithm to reveal the entire dataset  (Lubarsky, 
2010, Rocher, 2019). One concept that has been proposed is using synthetic data to substitute the original data, but 
until recently there has not been an effective method for generating synthetic data (Hermes, et al, 2012). 

 
In the short time since Goodfellow et.al. introduced GANs in 2014, generative adversarial networks have been put to 

work in a variety of applications. The most recognizable of these includes advances in image generation, where GANs 
are used to create synthetic faces (Radford, et al, 2015) or create artwork that mimics the style of an artist or period 
(Elgammal, et al, 2017). A recent paper from Uber proposes using GANs to generate synthetic training images to 

accelerate learning for AI agents (Such, et al, 2019). The synthesized datasets clearly defined boundaries between 
classes, leading to faster and more accurate training of models. Synthetic data has also been used to augment real 
image sets to improve models where the size of a dataset was insufficient (Frid-Adar, et al, 2018). The use of GANs 

for creating completely synthetic images has implications for other data types, including tabular data. A compelling 
aspect of synthetic data is  that by its very nature, it is secure against re-identification attacks (Park, et al, 2018). Unlike 
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pseudonymization methods, there is not an exploitable one-to-one relationship between synthetic and original 
datapoints that could lead to information leakage.  

 
Applying GANs to the problem of PII in tabular data does come with its own issues. One of the strong points of 

machine learning is that underlying associations between features can be found and exploited. For the synthetic data 

to be useful for future modeling, the distributions and relationships between features need to be represented. In one 

approach, the authors use Long Short-Term Memory (LSTM) Recurrent Neural Networks (RNN) with attention to 

maintain these relationships (Xu, Veeramachaneni, 2018). The resulting datasets outperformed conventional methods 

for anonymizing data and was robust to scaling. A second approach augments DCGAN (Radford, et al, 2015), an 

algorithm designed for generating images using Convolutional Neural Networks (CNN), for generating tabular data 

by adding a third CNN to act as a quality control (Park, et al, 2018). The purpose of the additional CNN is to maintain 

syntactic relations between features by classifying each synthetic data point and comparing the predicted label to the 

synthetic label. The authors found that the individual features were statistically similar to the original data, and that 

models built on the synthetic data performed better than models built using k-anonymous or perturbed datasets. One 

drawback to using this second method is a dependency on labeled data, which is contrary to the unsupervised learning 

aspect of most GAN applications. 

 
 

ANALYTIC APPROACH 
 
Data 

 
Data were obtained from a larger sample of the Navy Reserve dataset used in the paper “Feature Engineering and 
Ensemble Machine Learning in the Navy Reserve: Using Holistic Behavioral Profiles to Predict Mobilization 

Cancellation” (Milletich et al., 2019). This dataset was an appropriate choice for its cleanliness, familiarity, and the 
substantial modeling and code base we have already built with it. Chiefly, however, it was chosen for representing 

the exact type of dataset that brings with it the concerns our methodology seeks to address in that records are 
associated with individual sailors whose information needs to remain protected. Data was collected and hashed 
using the SHA-256 cryptographic hashing algorithm to completely secure unique identifiers. In an ideal state, the 

entire process of data synthesis will be migrated to NMCI assets to eliminate dependency on secure standalone 
assets altogether. 
 

The dataset consists of 10 years of career, demographic, and behavioral data from the full Navy Reserve population. 
The data was retrieved from the Navy Reserve Data Warehouse (NRDW), where updates to any feature value are 

stored daily. Our dataset captures these transactions by using a multi-delimited storage schema that includes each 
data value with the time stamp of its last update. Observations are labeled with a 0 or a 1 denoting whether a 
Reservist mobilized or canceled their mobilization within the window of interest. Of the observations in the 

complete mobilization dataset from which each individual experiment is derived, 11.8% are cancellations. If a 
SELRES did not have a mobilization in the window of a specific experiment, they were excluded from that 
experiment. Values for individual variables were feature engineered to capture factor values, numeric values, and 

temporal information as necessary to build a holistic profile of SELRES behavior in the Navy Reserve. Values were 
truncated prior to the mobilization event of interest so-as to eliminate data leakage. A full description of the data can 
be found in Milletich et al. 

 
Pseudonymous Data 

 
Pseudonymization is a standard approach used to de-identify data when the privacy of the entities needs to be 
protected, but the true values and underlying relationships of the features are not required. This technique replaces 

specified values with a randomly generated collection of characters meant to mimic the format of the original values 
allowing practitioners to work with pseudonymous data in a similar manner to the original data. The original values 

are stored in a table to ensure consistent mapping across all occurrences within the dataset. Because the generated 
pseudonyms are random, there is no mathematical relationship between the original and generated values. This 
enhances the privacy of the individuals by mitigating re-identification without access to additional information or 

the table. The consistent mapping of pseudonymous data allows for easy analysis of discrete data but may cause 
issues when analyzing ordinal or continuous data unless additional parameters are employed. Due to the urgent need 
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for protected data at CNRFC and because this approach is widely implemented, we began with a browser 
deployment of modified Pseudonymization technique as a proof of concept. 

 
Prior to running the algorithm, direct identifiers are hashed using the SHA-256 algorithm and salted with a 64-bit 
secret key. Deployed in JavaScript, the module then iterates through the remaining values by character. 

Alphanumeric characters are concatenated until a non-alphanumeric character or the end of the cell is reached. The 
terminal value is then checked against a dictionary of previously read values. If the value is not found, the algorithm 

identifies the data type as numeric (integers, floats, dates) or non-numeric. A new pseudonym is generated by 
replacing each character with a randomly selected character of the same data type, that is, numbers for numbers 
within the range of the data and letters for letters. Additional parameters such as minimum/maximum values for 

dates can be enforced to prevent nonsensical values and enable more advanced analysis. 
 
Synthetic Data (Previously GAN Methodology) 

 

 
Figure 1. GAN architecture 

 
Our GAN architecture is based on DCGAN with added classifier CNN employed by (Park, et al, 2018). The 
architecture is dependent upon a labeled dataset, which does limit its application, but was not a hinderance for the 

Naval Mobility dataset which has labels. In addition to the typical GAN architecture, which uses the discriminator 
loss to train the generator, the classifier loss is also a factor in training the generator. The classifier is trained on the 

origin data and makes predictions on synthetic data. The loss function for the classifier is calculated by comparing 
the predicted label for a datapoint to the synthetic label output from the generator. For a more detailed explanation 
of the implementation, please refer to their paper (Park, et al, 2018).  

 
EXPERIMENTAL RESULTS 
 

Synthetic datasets generated by each experiment were tested for statistical consistency between the original and 
synthetic data at the feature, label, and individual record levels. Random normally distributed data was also tested as 

a null baseline means of evaluation. At the feature and label levels, statistical consistency is important for feature 
engineering, data visualization, and any associated numeric or text operations on the synthetic data. This is because it 
enables value-agnostic coding operations on synthetic information to be applied to the real data with minimal 

modification and because it allows basic exploration of intra-feature relationships. At the individual record level, 
maintaining distributions across observations and labels is necessary to preserve enough signal between the synthetic 
features and synthetic labels to train a statistical or machine learning model. 

 
Statistical similarity between features was computed using an Anderson-Darling for k-samples test. Anderson-Darling 

is a non-parametric test of whether the samples are drawn from the same population and is appropriate when testing 
across several samples of data. In our case, for each synthetic dataset, we tested every encrypted feature against its 
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original counterpart. Table 1 reports the p-values for the Anderson-Darling test across synthetic datasets generated 
from both experiments. 

 

 mean p-
value 

range 

Pseudonymous Data 0.001 [0.001, 0.001] 
GAN Synthetic Data 0.025 [0.016, 0.034] 

 

Table 1. Anderson-Darling p-value ranges for all variables  
 

Table 1 shows that both models produced statistically similar features as those in the original data at 𝑝 ≤ 0.05 
significance. This result means that for all synthetic datasets, the desired outcome of statistical consistency across 

features between datasets is satisfied. 
 
Labels and records were tested by first training an XGBoost classifier on each set of synthetic data and comparing 

the results to the output from the real data. Similar AUC scores would indicate not only that important statistical 
properties persist through encryption, but that models can be trained and pickled from purely synthetic data. Table 2 

shows results for an XGBoost classifier employed with out-of-the-box parameters.  
 

AUC Scores Orig. Model 
GAN Synthetic 

Model 
Augmented 

Model 
HE Model Random Model 

Orig. Data 0.66 0.54 0.67 - - 

GAN Synthetic 
Data 

0.51 0.90 - - - 

Augmented 

Data 
- - 

0.89 

 
- - 

Pseudonymous 
Data 

- - - 0.66 - 

Random 
Normal Data 

- - - - 0.57 

 

Table 2. AUC scores for all experiments with out-of-the-box XGBoost model 
 
Table 2 shows that all models trained on synthetic data failed to produce similar output as those trained on real data. 

The most striking result from Table 2 is the ability of models trained on random normal data to generate comparable 
or better AUC scores than those trained on data generated by the GAN. This was because the labels generated by the 
GANs were singular and, as such, random normal data is statistically more likely to mimic the variance present in the 

real data than our singular synthetic values . 
 

We hypothesized that the results in these experiments were likely due to overfitting between epochs when we 
discovered mixed labels being generated at intermediate steps. The overfitting occurs when the discriminator learns 
the behavior of the generator as it produces more records in one class and the generator reacts by producing more 

samples from the other class. The process then repeats. Simply put, the GAN oscillates between both classes as each 
model overcorrects for itself.  
 

To test this hypothesis, we employed t-Distributed Stochastic Neighbor (TSNE) embedding to visualize the high-
dimensional data relationships in two-dimensional space for a dataset of observations from two sequential batches. 

TSNE builds a probability distribution over the high-dimensional relationships in the data and maps them to points in 
lower dimensional space. Figure 2 shows the embedding for our data, with each point colored by the synthetic dataset 
it came from. 
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Figure 2. TSNE for sequential epochs 

 
Figure 2 validates our hypothesis, as the separate synthetic datasets generated by each epoch clearly follow very 

different distributions, most likely following the label that they predict. Because we know observations in the real 
data do not adhere as strictly to these labels as the synthetic data, we added them to the two synthetic datasets and 

re-ran the algorithm. 
 
 

 
Figure 3. TSNE with real and synthetic data 
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A surprising result in Figure 3 is that a small sample of observations that came from one of the synthetic datasets 
more closely followed the high-dimensional behavior of the original data (indicated by the blue dots mixed in with 

the green) than that of their overfitted synthetic partners. 
 
Just as imbalanced class sizes may result in singular observations in traditional classification, we hypothesized that 

the overfitting of the GAN could be due to the same. To correct for this, we randomly eliminated samples of the 
majority class in the original data until both class sizes were equal and re-ran the GAN using this dataset. Figure 4 

shows that while a decent portion of the original data’s (green) behavior still evaded the GAN, all synthetic 
observations (blue) appear to exhibit realistic high-dimensional behavior. 
 

 
Figure 4. TSNE with balanced data 

 
As a point of verification, the network was trained and tested on the same data set used by the authors (Park, et al, 

2018). The resulting synthetic datasets were used to train an XGBoost Classifier model, and Table 4 shows the results 
compared to that of the original data, as well as an augmented dataset combining synthetic and real data.  
 

AUC Scores Origin Model Synthetic Model Augmented Model 

Origin Data 1.00 0.50 1.00 

GAN Synthetic Data 0.50 0.99  

Augmented Data   1.00 

 

Table 4. AUC scores using the Adult dataset from (Park, et al, 2018). 
 

The original data and the synthetic data both led to models that were highly accurate on data from the same pool. 

However, both models were random in their ability to accurately make predictions on data from their counterpart. 
Augmenting the data appears to have had neither a positive nor a negative impact on the outcome. 
 

DISCUSSION 
 

While no single set of generated data achieved all the qualities originally sought –that is, statistical integrity across 
records, features, and labels– all resultant datasets exemplify the cutting edge of data de-identification while 
possessing at least one of these qualities. For practical purposes, this means that experiments can be designed to 

procure secure synthetic datasets to address specific needs as they arise during development. Additionally, since each 
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desired property proved individually achievable, the results bode well for the possibility of producing a single dataset 
with all these properties by modifying the GANs. 

 
Pseudonymization is not designed to lead to realistic results from statistical models or machine learning. The approach 
did, however, produce defensibly secure pseudonymous datasets with structural properties that empower the developer 

to complete expensive tasks outside of sensitive systems. These include but are not limited to unit testing, data cleaning 
and aggregation, runtime optimization, schema development, and user interface design. Additionally, all synthetic 

features followed the distribution of their original values with high statistical significance, allowing for additional 
tasks such as realistic visualization of individual features and limited exploratory data analysis . 
 

The GANs resulted in synthetic datasets that allow a machine learning model to train to high accuracy in a purely 
synthetic environment. This is of value when tuning hyperparameters, optimizing algorithmic runtime, and exploring 
potential for statistics and machine learning in a sensitive dataset. There are, however, several noteworthy caveats to 

the usefulness of the datasets produced in these experiments. Whereas a machine learning model was able to produce 
excellent results on the synthetic data, this performance did not carry over when tested on the actual dataset, implying 

overfitting of the individual records to their labels by the GANs. This does not take away from the synthetic data’s 
value in being used to build hyperparameter tuners and analytic algorithms, but it does necessitate retraining when 
deploying them to the original data. Results from t-Distributed Stochastic Neighbor Embedding highlight that the 

models trained on the synthetic data are unable to find a decision boundary that could recreate the spread of the real 
data, though this is mitigated with more balanced data. Finally, whereas the security of homomorphic encryption is 
well-researched and highly regarded in industry, the novelty of deploying GANs for this purpose means that there 

may still exist vulnerabilities that have yet to be exposed. 
 

Future research should focus on increased data security and improving GAN output. With respect to security, 
researchers should take every effort to expose potential vulnerabilities in the synthetic data produced by the GANs to 
ensure that their data is secure. That said, passing such tests does not guarantee security, and until a larger body of 

academic research has accumulated, there is still some risk that information from the original data may be derived 
from the GAN output using a technique that has not yet been discovered.  
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