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ABSTRACT 
 
The ability to produce a rapid After Action Review (AAR) capability provides objective data for evaluation and 
expands learner experience. Current video feedback does not provide a complete picture of the tactical situation 
during training, nor is it immediately available for evaluation. Cameras may not be positioned properly or a critical 
event may be blocked from view. Individual positions relative to potential enemy fire are not recorded. Light 
Detection and Range (LiDAR) technology combined with position-tracking software provides an effective method 
to produce immediate AARs.  Position-tracking software and LiDAR technology when fused with digital imaging 
technology can capture both tactical and clinical skills to provide a more comprehensive audio/visual AAR 
capability with automatic scoring of performance. This capability can be used in conjunction with the Medical 
Training Evaluation System’s (MTES) assessment checklists currently fielded at the U.S. Army Medical Simulation 
Training Centers (MSTC). The result is an immediate playback of performance correlated to assessment scores for 
training and evaluation. 
 
Preliminary field-testing showed that LiDAR is capable of directing multiple cameras to track important actions of 
learners during a field training exercise. The position-tracking software accurately detected the persons of interest 
during a training event and cameras tracked their actions for the duration of the exercise. The AAR system 
successfully integrated the LiDAR data, video feeds, and skill assessment checklist to provide a fully integrated 
AAR system that provided all collected data in a simple user interface. Students compared the system to watching 
post-game footage of sports events to improve their performance. Instructors were able to pinpoint correct and 
incorrect actions to further educate the class and found the system to be valuable addition to training. 
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INTRODUCTION 
 
Military medical training is a fast-paced endeavor that includes rigorous didactic content, individual skills training, 
and outdoor lane training and evaluation exercises. A great deal of research has been conducted to improve military 
medical training, including technological advancements in medical manikins and part task trainers and new training 
modalities such as serious games that can utilize virtual and augmented reality technologies. These research areas 
have resulted in significant improvements in medical proficiency and ultimately an improvement in patient 
outcomes (Eastridge et al., 2012). However, there is still a need for improvement regarding the ability to assess and 
review these training exercises. 
 
The culminating event in a tactical medical training course requires an individual or squad to perform actions akin to 
those on the battlefield. These exercises are conducted on a “training lane,” an outdoor course in which Soldiers 
must move tactically while encountering obstacles and simulated opposing forces along the way. Additionally, 
simulated casualties are placed within the path of the Soldiers, requiring appropriate treatment using Tactical 
Combat Casualty Care (TC3) procedures. This includes movement of the patient to a safe location, performing 
medical treatment, and patient evacuation. During the exercise, a group of support staff may operate a variety of 
simulation assets to increase exercise realism, such as sound effects generators, smoke machines, and medical 
manikins. Instructors move throughout the lane with the group of Soldiers, assessing their performance and 
providing verbal instruction. At the culmination of the exercise, the instructor(s) provide an exercise debrief, or 
After Action Review (AAR). The AAR reviews the performance of the individuals and squad members and is one of 
the most important facets of training. Without understanding weaknesses, a student will be unaware of areas needing 
improvement. Unfortunately, the current method of conducting AARs is lacking, as instructors cannot see 
everything that is occurring at the same time and consequently are subjective in their evaluations without the 
capability to review video or other data sources to provide a thoroughly objective assessment.  
 
During a recent effort, researchers sought to implement technology within medical field training to: 1) improve 
AAR capabilities by applying a system of reconfigurable sensors within a lane training environment and 2) reduce 
instructor workload by intelligently automating recording devices and simulation assets. The result of this research 
was the creation of the Mobile Medical Lane Training (MMLT) system. This system uses a Light Detection and 
Ranging (LiDAR) sensor as a simulation director, which tracks Soldiers’ locations within the training environment. 
Based on their locations, the system intelligently tasks cameras to record areas of interest or send control signals to 
nearby simulation assets. Within minutes of exercise completion, the system processes the data from the LiDAR, 
video feeds, and the Medical Training Evaluation System (MTES), and creates a seamless AAR, allowing 
instructors to debrief students using video, an assessment checklist, and a 3D point-cloud representation of the field 
exercise and applied medical skills.  
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SYSTEM ARCHITECTURE 
 
The Mobile Medical Lane Training (MMLT) system is a multi-sensor, rapidly deployable After Action Review 
(AAR) system that uses LiDAR technology combined with the Medical Training Evaluation System (MTES). The 
MMLT AAR system uses 3D LiDAR data, a camera array, People Tracker software, and the Medical Training 
Evaluation and Review (MeTER) software, which is the primary component of MTES, to produce immediately 
reviewable AAR data. The full MMLT AAR system consists of two subsystems: the data capture system and the 
AAR station (see Figures 1 and 2).  
 

   

The data capture system consists of one Velodyne HDL-64 LiDAR unit mounted on a tripod, two Axis Pan-Tilt-
Zoom cameras on tripods, two helmet-mounted cameras (iON cameras), a data collection computer for the LiDAR 
People Tracker data and video data, a tablet for the MeTER offline checklist, and networking equipment. The 
system is expandable to allow for multiple LiDAR units to cover a wider area, up to 8 Axis cameras, and multiple 
helmet-mounted cameras. The AAR station consists of the MeTER server, an AAR computer for LiDAR and video 
data, a router, and two displays for the AAR data. One of the displays investigated was an interactive projector 
display that allows the instructors to use a small pen-like device to control the system from the projected visual (on a 
wall or a screen) rather than having to operate a computer. 
 
MTES Assessment System 
 
The system uses MeTER software, which was fielded as part of the MTES. MTES includes all of the hardware and 
networking equipment required for a site to use MeTER, including a server and student and instructor workstations, 
while MeTER is the software installed on the server. MeTER was developed by IVIR Inc. with funding through the 
Army Research Lab (ARL) Human Research and Engineering Directorate (HRED) and the Program Executive 
Office for Simulation, Training and Instrumentation (PEO STRI). MeTER is a computer-based educational 
assessment tool kit for medical and tactical knowledge and skills designed for the United States Army and currently 
installed at 23 Medical Simulation Training Centers (MSTC). The software runs on a server and is accessed through 
a browser. MeTER software allows for customized and editable content, and provides automatic cognitive tests and 
skill assessment checklists.  
 
The MeTER checklist provides a list of tasks and steps decomposed to the terminal level, with GO and NO GO 
scores for each step. Each score and step on the checklist are timestamped when completed, and instructors can take 
notes for each step if necessary. The checklist can be used both online and offline, allowing the instructors to 
conduct training away from the server. The offline checklist is a separate application that is installed on a Windows 
tablet and can be synchronized with the server to download and upload the student data. See Figure 3 for an example 
of the checklist. 

Figure 1. MMLT System Diagram Figure 2. MMLT AAR Station 
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Figure 3. MeTER Skill Assessment Checklist 
 
In the MMLT system, the MeTER system captures the student/team performance and allows for the data to be 
directly correlated to trainee actions being recorded by the LiDAR and cameras. When an instructor scores the 
completion of a step, the timestamp can be used later to index into the video and LiDAR data, which have been time 
synchronized prior to training. The MeTER system creates an interactive display that allows the instructor to choose 
specific events from the checklist to highlight during the AAR. Patient simulation sensor data may also be captured 
and transmitted into the MeTER system providing objective measurements of student and team performance, 
fulfilling a requirement of Army Learning Concept (ALC) 2015 (TRADOC, 2011).  
 
LiDAR People Tracker 
 
The LiDAR People Tracker is composed of two parts: a data capture system (LiDAR, set of cameras, laptop, and 
networking equipment) that is rapidly deployed in the outdoor lane, and a review station (laptop) that is typically 
positioned at the end of the lane or back in a classroom. Data is passed from the capture system to the review station 
by use of a USB flash drive (using a DVD is optional).  
 
The capture system used in this project is comprised of a single 
Velodyne HDL-64 LiDAR, two Axis 6034-E cameras, a MacBook 
Pro laptop running the People Tracker software, a power-over-
Ethernet switch, and tripods on which to mount each sensor. The 
system is capable of working with more cameras if needed, and 
functions with any model of Velodyne LiDAR. The LiDAR unit 
uses Class 1 (eye safe) lasers to detect objects in the environment by 
emitting beams in a 360° area and capturing the reflections of the 
beams off objects (see Figure 4).  
 
The People Tracker software takes the raw data stream from the LiDAR, applies calibration corrections, segments 
the point cloud into objects, classifies the objects to discern people and tracks the people as they move; all in real 
time. Cameras are assigned to the tracks based on algorithms for priority and optimization discussed in the next 
section. Based on these assignments, the cameras are commanded moment to moment to focus on the tracks of 
interest.  
 
 
LiDAR AND CAMERA MULTISENSOR FUSION APPROACH 
 
To better understand the multisensor fusion approach, some background in the tracking software is needed. At the 
highest level, the LiDAR People Tracker takes the LiDAR data as input, segments the LiDAR pointcloud data 
stream into objects, classifies objects that are likely to be people, tracks the people with a Kalman filter (Kalman, 
1960), assigns cameras to tracks or groups of tracks based on a priority scheme, and maintains a real-time data 
display.  
 
A few key data structures are kept for the LiDAR data. A background mask of voxelized cells is populated by the 
first eight seconds of data as an initial approximation of the static objects present in the scene (e.g. ground and 
trees). This background mask is aged out over a period by one thread, and re-enforced by incoming evidence of new 

Figure 4. Velodyne HDL-64 LiDAR 
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data. In this way, if an object that was initially believed to be static leaves the scene, the notion that is was 
background is discarded. If however, an object persists, it remains part of the background.  
 
A second key data structure is a vacant voxel map. This data structure consists of occupied voxels. Periodically, the 
system traces rays between the sensor origin and each sensed return from the LiDAR. Any unoccupied points along 
that ray then become observed vacant voxels. Due to the beam spacing of the LiDAR there are large regions of 
space that are never observed to be vacant. Since the background mask ages out, it is possible for a person to cast a 
shadow on a surface that no longer belongs to the background. Therefore, the points used to spawn a new track 
cannot come from within a background mask voxel, and must originate from a vacant voxel.  
 
Calibration of LiDAR and Cameras 
 
The goal of calibration is to be able to translate LiDAR 
coordinates to camera pan, tilt and zoom (PTZ) 
commands to follow tracks of people (see Figure 5). To 
begin, each tripod mounted sensor is manually leveled 
using a tribrach with a circular bubble level installed to 
each plate. The PTZ cameras are manually located by the user in a display showing a live view of the LiDAR’s 
pointcloud, defining cameras’ X,Y location. Next, the height of the camera relative to the LiDAR is determined by 
setting the camera’s tilt to 0 and focusing the camera on a graduated pole placed in the scene. Crosshairs in the scene 
mark image center. The height of the camera (crosshairs on pole) is marked for the LiDAR by placing an IR retro-
reflective dot on the pole. Using the calibration software, the user can find the IR dot in the coordinate frame of the 
LiDAR. Once complete, the height of the camera relative to the LiDAR is known and recorded. Once each camera 
has been localized in the LiDAR frame, that localization can be used to convert a point in the LiDAR’s frame to the 
corresponding pan and tilt values for the PTZ camera. The next step is to determine the zoom parameter. From a 
theoretical standpoint, if the target’s size and distance are known, the required field of view angle can be computed 
as shown in equation 1: 

 
 

where widtht is the width of the target and distt is the distance of the target to the camera. That field of view can then 
be used to determine the desired focal length as shown in equation 2: 
 

 
 
where widthi is the width of the image in pixels, widtht is the width of the calibration target in meters, and fl is the 
focal length in pixels. These computations hold similarly for height. These equations calibrate the zoom parameters 
of the cameras, ensuring that the resulting field of view is adequate to capture the training event. However, the Axis 
PTZ cameras that were used did not allow the focal length to be set directly, but instead they use an abstracted zoom 
level. In order to map focal length to zoom level, the camera matrix was computed at several zoom levels (Hartley 
and Zisserman, 2003) and fit to a linear function that maps focal length to zoom level. 
 
Prioritization for Aiming Cameras 
 
Determining which objects to target falls into three hierarchical categories: tracks, groups, and zones. A track is an 
individual person whom the People Tracker is following. Tracks have a centroid, an extent, a heading, behavior 
properties such as crouching or prone, and a priority. Priority is an integer value used to give relative weighting of 
importance between tracks. A group is a set of tracks that have a similar velocity and heading, and sufficient 
proximity to each other. Zones are polygon areas on the ground plane of the pointcloud that are defined a priori by 
the user through a point and click interface. Based on necessary parameters, a user creating a zone will select from 
the following types: ignore zones, observer zones, action zones, priority zones and priority pool zones. Ignore zones 
are areas in which the LiDAR does not process the data (used for regions in the range of the LiDAR not to be 

Figure 5. Calibration Steps 
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considered) such as a nearby street. Tracks that originate in observer zones will never have a camera resource 
assigned to them. Ideally, instructors will stand in an observer zone at the beginning of a data collection cycle. 
Action zones are regions wherein if 
tracks enter, all cameras should be 
assigned to the tracks in that zone. 
Priority zones transfer a pre-
determined priority onto tracks 
when entering. Lastly priority pool 
zones, contain a quantity (pool) of 
priority to transfer onto the tracks 
that are in the zone. Priority drains 
from the pool to the individual tracks 
at a set rate until it is exhausted. In 
this way, the first tracks to reach a priority zone may accumulate priority that later tracks will not receive.  
 
Camera assignment is prioritized first to tracks in action zones, then to groups exhibiting crouching behavior, and 
then to individual tracks based on priority (see Figure 6). Groups are defined by creating a dissimilarity matrix based 
on the following function in equation 3: 
 

 
 
where t1 and t2 are two tracks, 𝛼, 𝛽, and 𝛾 are weighting factors that determine the importance of each factor, and 
ds(t1,t2) is the spatial distance component, dh(t1,t2) is the heading component, and dv(t1,t2) is the velocity component. 
The density-based clustering algorithm (Ester, Kriegel, Sander, & Xu, 1996) is then used to cluster the tracks for a 
particular frame. This equation is used by the software to identify when multiple individual tracks are near each 
other and when they are moving in a similar direction at a similar speed, signaling a cohesive group of tracks rather 
than a random cluster of people. 
 
Once groups of tracks have been defined, priority groups are created. A priority group is defined to be one where 
some member of the group has a non-zero priority, and the group is determined to be crouching and stationary. 
These conditions correspond to expected behaviors of medical personnel during casualty treatment. Any such 
priority group gets the attention of all available cameras. The cameras zoom out to encompass the entire group and 
aim at the group centroid.  
 
In the case of targeting zones and groups, it is undesirable to have the camera constantly making small adjustments 
due to the shifting centroid of the group. To mitigate this, a set of “lock-on” behaviors has been defined. If the 
average velocity magnitude for a targeted group of tracks is observed to be below a threshold, the camera target 
position is only updated every 5 seconds, and similar behavior is used for zones after 3 seconds.  
 
The final category, tracks, is reached only when, after having considered the previous categories, there are untasked 
cameras left. Here an affinity matrix is computed between each untasked camera and unmatched track, where the 
affinity is defined as shown in equation 4: 

 
 

Figure 6. Aiming Prioritization 
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where ti is the ith track and cj is the jth. The wp, wf and wo parameters are all weights that define the importance of the 
corresponding functions. The P(ti) is the priority for track ti, F(ti,cj) is a function that returns 1 if camera cj is already 
following track ti, and O(ti,cj)is a function that returns a value between 0 and 1 that indicates the level of occlusion 
between camera cj and track ti. This equation allows the software to assign the correct camera to the priority track, 
ensuring that a camera with a blocked view of the track is not the camera assigned to the track. This status is 
continuously updated while following the track to allow for seamless handoffs between multiple cameras if the 
original camera becomes occluded due to track movement. To determine whether a camera/track pair is occluded by 
a static background object (e.g. bush), nine rays are traced through the vacant voxel map between the camera center 
to various target points on the track. Multiple rays are used to account for sparse occlusions like vegetation. A 
majority vote is made across the nine rays to decide whether the track is occluded from the camera. These scores are 
then accumulated across several past frames and the occlusion level is determined by the percentage of occluded 
frames. Once the camera/track affinity matrix has been created, cameras are associated to tracks using the Munkres 
algorithm (Munkres, 1957), which creates an optimal matching. By incorporating the 3D modeling of occlusions 
(e.g. walls, trees), the result is a seamless handoff of a track from one camera to another for tracks of high priority.  
 
 
AFTER ACTION REVIEW 
 
While the video and LiDAR data is being collected, an instructor uses a tablet with the MeTER checklist to score 
trainee performance during the scenario. The checklist is a list of steps, each with a GO or NO GO score for 
objective scoring. Each score is timestamped, so when the checklist scores are loaded into the MeTER server, the 
timestamps can be used to index the video and LiDAR data during the AAR. 
 
When the training scenario is complete, all the data is transferred to the AAR station via USB drive. The AAR 
station provides instructors with a comprehensive set of AAR information, including checklist scores, all video and 
LiDAR data, and a calculated shooter score. The shooter score calculation is based on the LiDAR data. Using the 
LiDAR data, the system can determine when any given 
trainee track is exposed to an enemy position (virtual or 
actor), which can be set by the instructor prior to training. 
The MeTER system calculates that every 3 continuous 
seconds of exposure equates to one shot on the exposed 
track. This information is displayed on the AAR page in 
MeTER as a graph, with one block for each “shot” on each 
track, each with a timestamp.  
 
The system provides two AAR displays, one containing the 
LiDAR and Axis camera data (see Figure 7) and one 
containing the MeTER data, including checklist scores, 
helmet-mounted camera videos, and shooter score graph 
(see Figure 8). 
 
The instructor can use the MeTER AAR display to select 
timestamps from either the checklist scores or shooter score 
graph to automatically advance all video and LiDAR data 
feeds to the same point in time, allowing the instructor and 
trainees to review all actions at that point in time to determine what was done correctly, or what could be improved 
during the next scenario. In addition to the AAR page, the MeTER system provides individual and summary reports 
to indicate strengths and weaknesses of a trainee or a team based on both cognitive tests and the skill assessment 
checklist. 
 
The resulting AAR system provides multiple streams of data, automatically correlated, that can be used by the 
instructors immediately after the training exercise. The data provided in the AAR stresses both medical training 
performance and tactical training performance through the shooter score and LiDAR data. 
 

Figure 7. LiDAR and Axis Camera AAR 
Display 
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Figure 8. MeTER AAR Display 
 
 
SYSTEM PERFORMANCE DURING USER TESTS 
 
The MMLT system was used for field evaluation of Combat Medics 
(68W) and Combat Lifesavers (CLS) at the Ft. Bragg MSTC. The 
68W class consisted of twenty-four students, divided into eight 
groups of three. The CLS class had forty students, split into four 
teams of ten. The first day consisted of a set of collections during 
which pairs of combat medics performed simulated medical 
procedures, including patient relocation, on a third soldier who 
played the role of the wounded. The second day was spent with 
squads of combat lifesavers performing lane training in a wooded 
environment. 
 
First Day Results 
 
In the first day’s exercise, two combat medics would start from a 
location of cover and proceed to recover a casualty hidden behind a 
tree. They would drag the casualty to safety, examine and/or treat 
them, place them on a stretcher, and prepare them for evacuation. 
This activity took place behind the training center in a pine forest, 
with discarded vehicles and other cover (natural and placed objects) 
available. One or more instructors walked with the students, offering 
real-time instruction and feedback during the drill.  
 
Prior to starting the drills, the system was deployed and calibrated in 
less than an hour. During the drills, data was recorded from 
seventeen exercises. Table 1 shows the performance of the system on 
these exercises. Performance is computed by sampling every ten seconds to determine whether the camera is aimed 
at an appropriate subject. The overall camera score is the percentage of these samples that target an appropriate 
subject. The result yielded ample video footage with which to evaluate student performance.  
 
The first day’s arrangement stressed the system in four distinct ways. First, due to the location where the drills were 
being practiced, the cameras were spread far apart with a shipping container between them. This resulted in 
considerable time in which one of the two cameras could always see the action, but the other camera was obscured.  
 

Table 1. First Day Experiment 
Camera Pair Utilization 
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Second, the Axis camera mpeg codec seemed particularly challenged by the “digital camo” pattern of the soldiers’ 
uniforms in certain lighting conditions during moments of high motion. This resulted in video artifacts that were 
unpleasant to watch. By reducing the video resolution from 1080p to 720p these video effects were eliminated. This 
was not reflected in the results shown in Table 1.  
 
Third, the training area was covered in a deep carpet of pine needles. The training exercise involved dragging 
wounded soldiers across the ground, which in some cases accumulated large piles of pine needles that in turn caused 
enough change in the environment that the tracker considered them new objects in the scene. If a soldier’s track was 
later lost, and a camera was assigned to these “disturbed earth” tracks, the camera could persist in watching the 
disturbed earth track for the duration of the exercise. The first collection exhibited this problem more so than others.  
 
Fourth, in nearly all cases the instructors did not start the exercise from the agreed observer zone location. In these 
cases the system could not differentiate the instructor from the soldiers, introducing the possibility that a camera 
resource would track the instructor rather than the soldiers.  
  
Second Day Results 
 
On the second day, the MMLT system was used to collect video for four groups of combat lifesavers performing 
lane training. The location selected was an area in which the soldiers would encounter a simulated casualty 
underneath barbed wire. The first two soldiers through the course retrieve the wounded, pull them to a safe location, 
and begin treatment. Additional soldiers arrive and assume tactical positions to protect the medical providers. This 
portion of the exercise could take five to fifteen minutes, during which one or both cameras should be aimed at the 
soldiers performing the medical intervention.  
 
The soldiers would approach from a distance and be picked 
up by the sensor at a range of approximately 100 meters. For 
this collection, a priority pool zone was placed around the 
casualty simulator, so that the soldiers who first reached the 
simulator would become the highest priority tracks. Table 2 
reports the performance for the second day using the same 
methodology as in Table 1.  
 
Despite the rather good camera utilization the system did 
experience challenges. First, the group sizes became rather 
large. When a group is found, the cameras lock on and treats them as one unit. When criteria for a group are no 
longer met, the system re-targets to individuals. It was observed that the walking instructor could sometimes cause a 
group to momentarily dissolve (either because of added velocity, or by being upright) thereby causing the system to 
re-target the cameras to individuals. Even if the resulting camera positions continue to record the medical procedure, 
the change in camera focus is undesirable to the user.  
 
Second, the latency to complete a zoom command is much longer than pan and tilt commands. In some cases, while 
the Axis camera is in the process of executing a zoom command, a subsequent zoom command is ignored. Since the 
MMLT system sends zoom commands without checking whether they are actually executed, the system may enter 
“bad zoom state.” Consider a sequence that begins with the camera focused on a group in a wide-angle view. The 
group is then momentarily dissolved, reassigning the camera to a single individual in a close-up view. While the 
camera is busy zooming in, the group re-forms and the camera is re-assigned; however, the “zoom out” command 
needed to view the group is never executed. This results in the camera aiming zoomed in closely at some arbitrary 
portion of the whole group. Third, disturbed earth continued to be a challenge on the second day, particularly under 
the barbed wire. This is especially problematic as it occurred in areas where the undesired objects could draw from 
the priority pool.  
 
 
EVALUATION OF THE USE OF MMLT IN TRAINING 
 
The Day 1 and Day 2 exercises had different characteristics. The notable differences were the length of the exercises 
(Day 1 median time was 7 minutes 40 seconds, while Day 2 median time was 3 minutes 20 seconds), and the 

Table 2. Second Day Experiment Camera 
Pair Utilization 
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number of participants per group (Day 1 was 3, while Day 2 was 10). Quantitatively, both days had relatively high 
automated camera utilization. Day 1 averaged 88% on camera 1, and 90.6% on camera 2. Day one’s first three data 
sets are markedly lower, which may be due to environmental changes (early students moving all the loose ground). 
Day two’s exercise had slightly lower camera utilization (88% and 75% respectively), again with the first data set 
being lower in utilization. Table 3 provides an overview of the issues and solutions identified during testing. 

 
Table 3. Testing Issues and Resolutions 

 
Qualitatively, both groups felt that the MMLT AAR visualization of their performance in the field was valuable. All 
students felt it would enhance the training experience to have access to the visual data performance after training 
and prior to final validation. Due to the site training schedule during the user test, the test team was unable to 
formally collect student and instructor surveys; however, student and instructor comments were noted. Students 
found that the MMLT system can assist in self-performance evaluation, similar to a “pre and post-game review” in 
sports. The instructors found the MMLT system to be a valuable tool for after action reviews of individual and team 
performance in a field environment.  
 
 
CONCLUSIONS AND FUTURE WORK 
 
MMLT embodies a novel multi-sensor approach to documenting training exercises. From the end user’s point of 
view, the two data feeds (video and LiDAR) give complementary information, and by recognizing events (reaching 
wounded or instructors’ time stamped grades), key moments can be indexed for easy retrieval. From an 
implementation point of view, tracking in the LiDAR data feed is easy and gives accurate coordinates for aiming the 
camera. The 3D model of the scene allows for anticipation of occlusions of tracks for camera handoff. The inclusion 
of several different data sources (checklist, Axis cameras, helmet cameras, and LiDAR) was found to increase the 
validity of the AAR. In several cases, one or more of the data sources could not accurately detect all of the actions: 
an object or person may have occluded an Axis camera or the LiDAR, or the instructor may have been distracted. In 
those cases, data from the other sources served to “fill in the blanks” to provide an accurate account of what 
occurred during those moments. 
 
A limitation of the original approach was that groups were (re)discovered with each frame of LiDAR data. The 
MMLT system now allows groups to persist from frame to frame, which allows for greater reasoning about how to 
prioritize groups relative to other tracks, reducing the effect of instructors walking through a group. The challenges 
with disturbed earth have been addressed but still need to be tested. A step was added to compute statistics of height, 
number of points, and velocity for a long window of time, creating filters that can ignore disturbed earth tracks. 
 
The MMLT system shows great potential as an AAR system for students and instructors in a field-training 
environment. The students greatly appreciated having video feedback and were interested in the LiDAR feed, 
especially for tactical movement review. The students also found value in how the LiDAR view showed the 
movement of the entire team, not just the individual, so they could see how well they worked together.  
 
Future Development 
 

Identified Issues Potential Resolution 
Software may track human-like objects (e.g. disturbed 
earth) rather than the tracks of interest 

Add more specific filters for identifying a moving, 
human track 

The grouping algorithm was recalculated each frame, 
potentially dissolving some groups temporarily and 
refocusing cameras away from the action 

The grouping algorithm persists between frames, so 
smaller changes in the group dynamic will not dissolve 
the group 

Difficult setup and calibration for non-technical users Automate aspects of the setup process and provide a 
detailed walkthrough in the software 

Cameras may get stuck in a “bad zoom” position Add a check to verify the zoom command was 
successful 

Camera focus and movement may appear jerky, the 
resulting video is difficult to watch 

Ignore smaller changes in group and individual position, 
so the camera only refocuses during large position shifts 
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With new technology becoming available, and to make MMLT more mobile and affordable, there should be further 
investigation into alternative LiDAR systems, including smaller and less expensive units. With less expensive units, 
more units can be combined into one system, allowing the coverage of more area. The system can also be made to 
operate on a local wireless network for data transfer. Future development will also include simplifying the 
calibration and setup process, allowing non-technical personnel to quickly set up the system prior to training. 
 
The MMLT system could be used to fully automate the lanes during training. Using the zones and LiDAR data, 
virtual triggers can be implemented for certain effects like smoke and simulated artillery fire as the students move 
through the lane, removing the need to place instructors in the lane waiting for students to pass by. Further 
automation can be included, such as automatic medical skill checklist scoring using sensor data from manikins, and 
automatic tactical skill checklist scoring using LiDAR data and individual identifiers on each student (the LiDAR 
data only sees track 1 and track 2 currently, it does not know that track 1 is John Smith).  
 
Future Applications 
 
While the current MMLT system was designed for and tested with MSTC Combat Medic and Combat Lifesaver 
training, the system can be expanded for use in other applications, particularly training scenarios that currently do 
not have robust or objective data collection and assessment methods and those that focus on team training exercises. 
The MMLT system can be used to capture team training events to conduct comparisons of best practices/approaches 
for refining procedures specifically where lifesaving events can be improved upon. The system can track individual 
and team movements of experienced providers and compare those movements to a less experienced team, 
highlighting differences in efficiency during a scenario (e.g. better communication among team members for 
positioning). Training for disaster preparedness and incident response such as active shooter situations would also 
benefit from the MMLT system allowing providers to measure the effectiveness of patient triage and the timeliness 
of medical intervention. The 3D data and virtual shooter capability can highlight the importance of situational 
awareness during an active shooter scenario, ensuring the provider is aware of both the patient and of their position 
in relation to additional danger. 
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