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ABSTRACT 

 

With the growth of social media, the value of text-based information continues to increase. It is difficult to analyze a 

large corpus of text to discover the structure within the data using computational methods. Alan Turing (1950) opens 

his influential article "Computing Machinery and Intelligence" with the statement, "I propose to consider the 

question, 'Can machines think?'" (p. 433).  Overall, this Turing Test has become a basis of natural language 

processing. The essence of this project is to take a corpus of text and build a predictive model to present a user with 

a prediction of the next likely word based on their input. A key aspect of the paper is discussion of techniques 

balancing accuracy and scalability for large data sets. This paper provides the analysis decisions used to develop that 

predictive text model for a corpus of over 500,000 blog articles. The resultant model exists as a web-based data 

product that allows for customizable user reporting. Additionally, the work presented in this project follows the 

tenets of reproducible research and all code is available in an open-source repository to enable readers to review the 

approach, reproduce the results, and collaborate to enhance the model. 

 

Keywords: natural language processing, predictive model, text mining, predictive text analytics, N-Gram, data 

product, Good-Turing Smoothing, Katz back off 

 

 
ABOUT THE AUTHOR 

 

Gerald "Jay" Gendron is a data scientist who consults for various organizations through his group Confido 

Consulting. He is dedicated to the idea that decision makers have greater access to analysis than some may lead 

them to believe. As open data becomes more and more commonplace, decision leaders can have faith in their 

decision-making processes by asking questions and requesting data products rather than dashboards and reports. Jay 

is a business leader, artist, and author who writes on various perspectives of how good questions and compelling 

visualization make analysis accessible to decision makers. His analytic pursuits include finding trends in the startup 

and entrepreneurial communities, assessing learning and sociological impacts of technology-centric training 

systems, and making results tell the story of business case analyses for procurement and supply chain strategies. He 

is especially enjoys writing about the impact generational differences have on workforce training and managerial 

approaches. Jay is an award-winning speaker who has presented at international conferences and symposia. He 

volunteers his time with the national group Code for America – contributing data science skills to projects aimed at 

improving civic and municipal access to data and data products. 

   

 

 

 

 

 

 



 

 

 

MODSIM World 2015 

2015 Paper No. 13 Page 2 of 10 

Natural Language Processing: A Model to Predict a Sequence of Words 

 
Gerald R. Gendron, Jr. 

Confido Consulting 

Spot Analytic Chesapeake, VA 

Gerald.gendron@gmail.com; LinkedIn: jaygendron 

 

 

EXECUTIVE SUMMARY 

 

This report provides documentation describing the process and decisions used to develop a predictive text model. 

The model uses natural language processing techniques to accomplish predictive analytics. The main body of the 

report provides a descriptive approach to predictive modeling by summarizing key considerations encountered 

during the analysis. Key learning points are included to aid readers interested in reproducing this work and 

enhancing it. Overall, the discipline of natural language processing is a broad and useful domain of data science. 

This report includes a brief literature review capturing key concepts that guided this project. The corpus used in this 

analysis has a sort of personality. More specifically, it is a unique collection of words, phrases, and sentences 

affecting the resulting prediction model. Exploratory data analysis helped characterize details of the text corpus and 

determine which parts of the corpus would be most useful for prediction. The initial model created from a small 

subset of the corpus was accurate, but it was not scalable. Additional research, creative thinking, and persistent 

modeling alterations resulted in a predictive text model that balanced accuracy with scalability. The model described 

in this report is a web-based data product made available to readers for review. It allows users to customize results 

of the analysis to suit their desires. Lastly, the project follows the tenets of reproducible research and all code used 

in the development of the project is contained in a Github repository (Gendron, 2014). 

 

UNDERSTANDING THE PROBLEM 

 

A most important aspect at the outset of any data analysis project is to understand the problem. With the advent of 

social media and blogs, the value of text-based information continues to increase. The practical application of 

extract value from text is increasing seen in areas like click-based web marketing, customer segmentation, and 

sentiment analysis of Twitter and Facebook comments. The problem in analyzing a large corpus of text is to 

discover the structure and arrangement of words within the data in order to analyze the corpus using computational 

methods. The essence of this project is to take a corpus (a body) of text from various sources, clean and analyze that 

text data, and build a predictive model to present the next likely word based on the prior two words provided by a 

user. User input could range from formal, professional communication styles to informal, short messages – more 

typical in social media. Therefore, knowledge of the data characteristics in the corpus is essential. As a concrete 

example, a user may type into their mobile device - "I would like to". A predictive text model would present the 

most likely options for what the next word might be such as "eat", "go", or "have" - to name a few. 

 

Data sciences are increasingly making use of natural language processing combined with statistical methods to 

characterize and leverage the streams of data that are text based and not inherently quantitative. There are many 

techniques available within the R programming language to work quantitatively with text. A key aspect of this 

project is to discern which techniques best promote accuracy and scalability for large data sets. This project provides 

a unique contribution. Other models for predicting text are proprietary products used on various mobile platforms. 

This project makes all the code and algorithms available as open, collaborative code for others to investigate and 

improve. 

 

LITERATURE REVIEW 

 

An Origin of Natural Language Processing 

 

Alan Turing (1950) opens his influential article "Computing Machinery and Intelligence" with the statement, "I 

propose to consider the question, 'Can machines think?'" (p. 433). He follows this by outlining something he calls 

the imagination game played by man A – known as label X, woman B – known as label Y, and interrogator C. The 
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interrogator is able to ask questions of X or Y in order to attain the objective to properly identify whether "X is A 

and Y is B" (p. 433) or vice versa. Turing later refines the original question to read, "Are there imaginable digital 

computers which would do well in the imitation game?" (p. 442). In essence – to predict truth based on features or 

interrogation. He speaks to a machine teaching process made up of rewards and punishments enforcing orders in 

symbolic language. Overall, this Turing Test has become a basis of natural language processing – covering a broad 

array of uses such as spelling correction, speech recognition, author identification, and prediction of words based on 

preceding words. 

 

Literature Review Purpose and Findings 

 

At the outset of this project, a literature review identified various sources on natural language processing, text 

mining, and various R programming packages. Further literature review helped extract clues for building a model. 

Primary goals of the literature review were to understand: 

 

 common issues when analyzing text data 

 the body of knowledge that has built up in the domain of natural language processing 

 other resources not provided by this course for helping us in the analysis methodology 

 

This section is not a comprehensive overview of over 40 sources reviewed but merely a summary of the two works 

most influential in shaping the modeling approach taken in this project. 

 

Feinerer, Hornik, and Meyer (2008) provide a good overview of the essential aspects of the R packages on NLP 

openNLP and text mining tm. Noteworthy was their information about: reading in corpora into the R environment; 

explaining functions to transform the data; explaining stemming, stopwords, and tagging parts of speech; 

considering the issue of text sparsity; and understanding the fundamental of count based analysis. 

 

Jurafsky and Martin (2000) provide a seminal work within the domain of NLP. The authors present a key approach 

for building prediction models called the N-Gram, which relies on knowledge of word sequences from (N – 1) prior 

words. It is a type of language model based on counting words in the corpora to establish probabilities about next 

words. Overall, Jurafsky and Martin's work had the greatest influence on this project in choosing among many 

possible strategies for developing a model to predict word selection. It addresses multiple perspectives of the topics 

found in Feinerer, Hornik, and Meyer. The following approaches and assumptions were chosen for purposes of 

building an initial model. They could then be adapted to increase prediction accuracy. 

 

1. Case: corpora words will not be case-sensitive. Although important for spelling correction and part of 

speech analysis, the words themselves - not their case - are important for prediction. 

2. Stopwords: similarly, unlike classification and clustering applications, all words will be included in the 

model as they represent more than just the primary carriers of the message. 

3. Wordform: stemming will not be used as N-Grams are typically based on wordforms (unique, inflected 

forms of words). Whereas table and tables are the same lemma, they will be treated as separate words in 

this model. 

4. Punctuation: Jurafsky and Martin treat punctuation as a word and count it as a word. Given the nature of 

the problem, which is not trying to generate full sentences but only predict a next word, punctuation will be 

treated slightly differently in the initial model. End of sentence punctuation (e.g.,  ?  '  !  . ) will be used to 

include end-of-sentence tags, as the intuition is they have implications for word prediction. 

5. Parts of Speech: the discussion of N-Grams did not imply the inherent value of predication based on 

syntactically using parts of speech. 

6. Numbers: there is no intuition based on the research that numbers will have a great impact on a predication 

model and they will be removed 

7. Sparse Words: all words will be retained. A key concept from Jurafsky and Martin is the idea that even 

bigram models are quite sparse; however, rather than eliminating those wordforms, they become clues to 

the "probability of unseen N-Grams" (p. 209, 2000). They include as their fourth of eight key concepts 

Things Seen Once and recommend using the count of wordforms seen a single time to provide a basis to 

estimate those things not seen in the training set and will likely appear in a test set 



 

 

 

MODSIM World 2015 

2015 Paper No. 13 Page 4 of 10 

8. Whitespace: this was not discussed directly by Jurafsky and Martin. The intuition is that whitespace has 

little to do with context and excess whitespace will be removed 

 

In addition to shaping the initial strategy, the work by Jurafsky and Martin provided valuable insights on other 

aspects of implementing a predication model. 

 

 Historical context of the unsmoothed N-Gram and basis of probabilistic approach to predicting words using 

the Markov assumption to simplify probabilities by looking only at (N - 1) or (N - 2) previous words 

 Importance of having a diverse corpora to improve generalizability of prediction among other corpora 

 Comparative analysis of smoothing and discounting techniques to increase predictive power  

 Introduction of back off techniques to establish probabilities for otherwise unseen elements of an N-Gram 

 Discussion of entropy and perplexity - which may prove to be a good choice as the single measure to help 

assess quality of the prediction model 

 

DATA PROCESSING 

 

We have to understand the data, determine what should be done with the data, and generate the questions that need 

to be asked to ascertain whether the data is sufficient to do the job. This section briefly addresses the acquisition, 

processing, and exploration of the data. 

 

Data Acquisition and Cleaning 

 

SwiftKey was a corporate partner involved with this project. They produce software to aid users in rapidly entering 

text with higher accuracy on mobile devices. Based on their collaboration with Johns Hopkins University, a dataset 

(Coursera, 2014) was provided for this project. The dataset is a zip file including blog posts, news articles, and 

Twitter tweets in four languages (English, German, Finnish, and Russian). The data was downloaded using the R 

programming language (R Core Team, 2014) and the elements were extracted using the R text-mining package 

called tm (Feinerer. Hornik, & Artifex Software, 2014). The PCorpus function was used as it establishes a 

permanent database instead of a virtual one. This allowed a database to hold over 3.3 million documents in physical 

disk memory rather than completely in RAM to reserve processing capacity. 

 

A preliminary exploration of the corpus indicated the raw data required a number of transformations to prepare it for 

statistical modeling. The data set was cleaned using over 20 transformations that pre-processed the data for analysis. 

In general, those transformations included conversion to lower case, ensuring apostrophes were retained to maintain 

contractions, removal of numbers, and removal of excess whitespace. Intermittently in the process, the corpus was 

written back to disk and the database was re-initialized using the filehash package to reduce the size of data 

processing in RAM. Although one-third of the way through processing the corpus had exceeded 1 GB in RAM, use 

of filehash kept this well below that. The final corpus of over 539,573 blog documents after all processing was 

only 108 MB. It is worth noting the original data set of 899,288 blogs was over 205 MB. 

 

Exploratory Analysis 

 

Clean data is a necessary but not sufficient condition to developing a prediction algorithm. This step is about 

understanding the relationships between the words and sentences as well as other observable artifacts. Results of the 

many hours of exploration included a better understanding of relationships between vocabulary size and unique 

words, distributions of various N-Grams, and information that helped reevaluate the original strategy presented in 

the literature review. Table 1 provides statistics on the full corpora. It shows the total number of documents in each 

genre of the corpus. 
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Table 1: Characterizing the Corpora by Word Count, Type, Ratios, Diversity 

 

Source Documents Vocabulary (V) Word Types (T) TTR (T/V) Diversity 

Blog 899,288 37,334,131 1,103,548 0.030 127.71 

News 77,259 2,643,969 197,858 0.075 86.04 

Tweets 2,360,148 30,373,543 1,290,170 0.042 165.53 

Corpus 3,336,695 70,351,643 2,123,809 0.030 179.04 

 

Table 1 also shows the total vocabulary (V), which equals the number of total word tokens present in each genre. 

Just over half of the total Corpus is composed of blog posts. Word types (T) are the number of unique words within 

the Vocabulary. The Type/Token Ratio (TTR) is a well-documented measure of language comparison. It equals the 

total word types divided by vocabulary (Richards, 1987). The TTR indicates complexity, with higher numbers 

indicating a more complex genre. Tweets are the most complex because it takes more unique words to build a 

smaller vocabulary. This measure was used to make a decision to limit the data for the model to just blog entries. 

News articles tend to be overly repetitive with non-conversational language and tweets are a language unto 

themselves with many "created" words. 

 

Diversity is the last column of Table 1. According to Richards (1987), it is a more useful measure because TTR will 

tend to fall off just from a growing vocabulary. Diversity is defined as "a measure of vocabulary diversity that is 

approximately independent of sample size is the number of different words divided by the square root of twice the 

number of words in the sample" (Richards, p.208). It is robust and positively correlated to the tokens. It also flattens 

out at some point. Table 2 shows the effect on diversity as the size of the vocabulary (document numbers) increases. 

There is a relative flattening out at 60 percent of the total documents. This corresponds to a common technique for 

separating data into a 60 percent training set, a 20 percent test set, and a 20 percent validation set. This observation 

helped solidify the decision to use a training set composed of 60 percent of all blogs in the dataset.  

 

Table 2: Effect of Vocabulary Size on Diversity Measures 

 

Measure Type 50 500 5,000 50K 60% 80% Entire 

Diversity Blog 16.38 34.17 57.31 83.07 118.55 123.72 127.71 

Diversity Corpus 22.68 45.22 72.56 103.84 163.43 172.10 179.05 

 

Notice in Table 3 that the widely used measure of Type/Token Ratio shows the similarity in complexity as 

represented by the blogs and the entire corpora of blogs, news, and tweets. 

 

Table 3: Effect of Vocabulary Size on Type/Token Ratios 

 

Measure Type 50 500 5,000 50K 60% 80% Entire 

TTR Blog 0.51 0.31 0.18 0.08 0.04 0.03 0.03 

TTR Corpus 0.49 0.29 0.15 0.07 0.04 0.03 0.03 

 

Understanding the distribution among the word tokens helps shape expectations of the linguistic model. An N-Gram 

refers to the number of words in a string. This project will work on a 3-Gram model. The basic building blocks of 

that model are unigrams (N: n=1), bigrams (N: n=2), and trigrams (N: n=3). 
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Figure 1 provides the distribution of the frequencies of each of these word forms from the 60% set of blogs. 

 

 
Figure 1: Distributions of Three N-Gram Models 

 

Prior to plotting, the frequencies were sorted in decreasing order and the x-axis is an index. Therefore, the far left of 

each plot in Figure 1 indicates an N-Gram with the highest frequency. Notice a few features of the data. Although 

there are far fewer unigrams (198,576) than bigrams (3,525,643) and trigrams (17,021,221), their distributions are 

much more skewed right as the level of N increases. This indicates very long tails (more frequencies of 1, 2, etc.) but 

at the same time much higher frequencies of particular words (such as "the", "and", "to", etc.). The three plots are 

logarithmic in the y-axis and set at a common y-axis limit to aid in comparison. In logarithmic scale log10(1)=0. 

Figure 1 gives an idea of how many singletons exist: 

 

 within the first half of all unigrams, no frequencies of "1" are seen 

 for bigrams, single frequencies occur at about 30 percent (around 750,00) 

 for trigrams, single frequencies occur after only 10 percent of 3-grams appear. All single 3-grams were 

removed from the dataframe to work within RAM – therefore, no plot points appear at log10(frequency)=0) 

 

Jurafsky and Martin (2000) also describe the importance of "frequencies of frequencies". This is the number of 

occurrences of all word frequencies. As a concrete example, assume the 1-gram "cat" appeared 10 times in the 

corpus. Also, assume that the words "dog", "flower", and "automobile" appeared 10 times in the corpus. The 

frequency of frequency for k = 10 is the value four – the frequency 10 appeared four times. Hence, the term 

frequency of frequencies. According to Jurafsky and Martin, "we examine Nc, the number of N-grams that occur c 

times. We refer to the number of N-grams that occur c times as the frequency of frequency c" (2000, p. 212). A 

visualization of these frequencies is provided in Figure 2. 

 
 

Figure 2: Frequencies of Frequencies of Various N-Grams 

 

The frequencies of frequencies view of the corpus is an important feature for N-Grams because these counts enable 

predictions of other words. The frequencies reduce rapidly comparing unigrams to trigrams. Information from the 

literature indicates that these frequency tables respond well to regression analysis to smooth out the information and 

avoid having to keep all the data in storage. 
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STATISTICAL MODELING 

 

The overall method used two generate the first model is based a technique of taking the full corpus and breaking it 

up into a training set, a developmental test set, and a test set (terms from Jurafsky and Martin). The objective of the 

modeling phase is to create a model that balances accuracy with speed and scalability given that we expect a very 

large data set in the working corpus. Algorithms of the initial model are revised to improve either accuracy, speed, 

or both if possible. 

 

Predictive modeling 

 

As noted in the literature review, the strategy selected was to build an N-Gram model augmented with Good Turing 

Smoothing methods. Initially, it appeared a full Markov matrix would be necessary; rather, the Markovian properties 

afforded by N-Gram modeling were of true interest. In other words, it does not matter the length of the phrase – one 

can predict a word on a trigram, bigram, or even unigram (Jurafsky and Martin, 2000). 

Continuing with the cleaned and transformed corpus, it was tokenized using the tau package in the R programming 

environment (Buchta, Hornik, Feinerer, & Meyer, 2014). N-Grams were generated for (N:n=1, 2, 3). This proved to 

be a very efficient way to store the data because it collapsed entire matrices into small number of columns (between 

three and five), albeit having very long numbers of observations. To give an idea of the number of unique N-Grams, 

Table 4 shows the number of observations for the 1-, 2-, 3-Gram models. 

 

Table 4: Relative Size of Observations from Various N-Grams 

 

N-Gram Instances 

1-Gram 198,576 

2-Gram 3,525,643 

3-Gram 17,021,221 

 

Having these N-Gram models in dataframes, a Good-Turing matrix was generated. As noted in Jurafsky and Martin 

(2000), any N-gram with a frequency less than (K:k=5) is an ideal candidate to adjust the count using Good-Turing 

methods. N-Grams appearing six or more times are seen to be realistic and do not require smoothing. The power of 

the Good-Turing method is that it allows us to calculate a probability of the unseen N-Gram. In order to do this it 

must discount the probabilities of the seen N-Grams in order for the probabilities to add up to one. As mentioned 

above, discounting in this predictive model was applied to all frequencies of frequencies between the numbers one 

in five. Those discounted probabilities accumulate and go towards the probability that the N-Gram appears zero 

times. Table 5 shows the Good-Turing Smoothing matrix for this model. 

 

Table 5: Good Turing Smoothing Matrix for Predictive Model 

 

count uni bi tri 

0 1.28 4.74E-05 7.81E-10 

1 0.30 0.24 0.17 

2 1.32 1.15 0.22 

3 2.39 2.13 3.44 

4 3.36 3.13 3.21 

5 4.30 4.15 4.29 
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The first prototype of the predictive model was run against test data. At this point, Katz back off approaches were 

not implemented in the algorithms. The basic flow of the user interface with the algorithm follows this process: 

 

 the user inputs two words (a 2-gram) to the predict function – with the goal of generating most 

likely third words 

 the 2-gram is searched for in the trigram model look-up table 

 if that 2-gram does not exist, a simple message appears that the word did not exist in the look-up 

table (in prototype only) 

 if the bigram is found, a subset of all 3-grams starting with that 2-gram are generated 

 the algorithm next uses the Good-Turing Smoothing model to update the count for each element 

of the subset where (K:k < 5) 

 the probability of the resulting trigram options is calculated by dividing the count of the trigram 

by the count of the bigram 

 

The algorithm allowed for an accumulation of possible third words within 10 clusters (fixed during prototyping). 

During early runs of the algorithm with very a small corpus, there were many times when the probability of the most 

likely third word had up to 14 different options. As the corpus used in the model grew, the stratification of these 

probabilities was expected to become more granular. It was determined that later iterations of the model would 

allow the user to adjust the number of clusters presented in the results. 

 

Having created this first predictive model it was run against a test corpus. The early predictive model – using a small 

corpus of 30,000 articles and documents – resulted in an accuracy of about 20 percent. This compares to the 

accuracy of SwiftKey at approximately 30 to 40 percent. 

 

Creative exploration 

 

Having a prototype allows for creativity and practicality to merge. First, the corpus used was increased to the full 

training set representing 60 percent of blog posts. Very quickly – and unfortunately – it was clear the preprocessing 

to develop the N-Gram matrices was not scalable. In other words, the number of observations (rows) vastly 

exceeded the physical RAM capabilities of 4 GB of the development platform used in this project. This required an 

improvement in the algorithmic approach to improve the basic preprocessing. However, it was believed the 

prediction algorithm would still run as efficiently once the N-Gram models are brought into proper size. Revisions 

to the prototype data cleaning were implemented to include end-of-sentence and number tags, conversion of various 

ASCII codes to appropriate language wordforms, removal of punctuation except apostrophes and < > symbols, and 

removal of web URLS. These adaptations had the desired effect. The 60% training blog set could be fully processed 

within the R statistical environment. 

 

Another very important change was in developing the trigram table. During processing, that table exceeded the 

physical RAM memory. The large number of single trigrams was removed from the dataframe. Although the results 

of this were seen in Figures 1 and 2, the singletons were not removed until after prototyping. Upon inspection, most 

of the singletons were very rare and odd combinations of words. The algorithm for preprocessing was adjusted to 

find all the single trigrams frequencies and remove them from the table. This process was not straightforward. One 

had to keep RAM limitations in mind. Therefore, it was accomplished in a series of iterative chunks – taking a 

subset of 10,000 documents at a time, processing them, and then using the aggregate, merge, and rbind 

functions of R. For the 60 percent training corpus, this required 54 "for loops" and generated 54 individual data 

frames. 

 

The merge function aggregated those 54 dataframes to accumulate all of the counts in a way that avoided losing a 

single trigram if it appeared in one data frame. This approach is similar to the MapReduce approach used in Hadoop 

style data processing. Once all the data frames were consolidated – and consolidated – and consolidated again, the 

total number of single trigrams exceeds 15,000,000 in number. Overall, this process reduced the final dataframe of 

trigrams for the model to just 1,464,904 observations. Reducing the dataframe increased speed and scalability. As 

for accuracy, this update model was run against the test sets and it increased accuracy to approximately 40 percent. 
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One last modification is worth discussing. The size of the three dataframes was a concern when loading it into a 

web-based environment. The initial and revised model used a design relying on a two-gram and a three-gram 

dataframe. This amounted to 170.8 MB of data. Some experimentation was conducted to discern the effect of adding 

end of sentence markers. Using them in the data processing had a significant effect and reduced the table sizes by 20 

to 30 percent in terms of overall numbers of observations. An idea then emerged to eliminate the two-gram table 

from the model all together. It served as a look-up table in the initial prototype to determine if there were any 3-

grams in the model. Later, it was realized that the three-gram model already contained all the 2-grams and 1-grams 

within its structure. The reduced dataframe was loaded on the web server. At runtime, a simple grep command 

using regular expression searching extracted the particular bigram and unigram from the dataframe. The Katz back 

method was added to the algorithm to compensate for the elimination of single trigrams. This eliminated 

programmed error-checking messages seen in prototyping that "no options could be provided" to the user. All told, 

these enhancements reduced the web-based model 75 percent to a much smaller 42 MB CSV file that proved 

scalable on all of the laptops, desktops, and mobile platforms tested during development. 

 

REPRODUCIBLE DOCUMENTATION 

 

All of the data processing, analysis, and results are fully reproducible by executing the code provided in the project 

repository. It is an R markdown file available as open source at https://github.com/jgendron/datasciencecoursera. 

Those interested in collaborating on this or similar projects may contact the author at LinkedIn: jaygendron. 

 

RESULTS – CREATING A DATA PRODUCT 

 

All told, enhancements to the initial predictive model reduce the web-based model to a 42 MB CSV file that is 

scalable on various devices. Once loaded, the methods used to access the data frame allow the model to load in less 

than two minutes. After the initial load, subsequent queries of the model provide near instantaneous results to the 

user after they provide two words as input. Results of the data product present a list of possible "third words" to the 

complete the two-word phrase entered. Additional controls within the data product allow the user to adjust the 

amount of information they see. The interactive web-based model is available at the Shiny.io web site under the link 

https://jgendron.shinyapps.io/predictngram/. 

 

CONCLUSIONS 

 

In this analysis, many observations were made of common relationships between the various sub-corpus elements, 

the vocabulary, and word types. These enabled better understanding of their impacts on predictive power of a model. 

Using information learned during exploratory data analysis, the algorithms were refined to generate look-up tables 

that balanced depth of information with speed of processing. There was a subset of the corpus (specifically, 60 

percent of the blog corpus) that produced an optimized balance between these competing characteristics. The Good-

Turing approach was employed to develop the tables of counts, which enabled prediction. The Katz Back off 

approach was implemented in the event a particular three-word phrase was not found in the look-up table. This 

analysis suggests that although a predictive model can be built, the data product is most useful for predicting 

common word stems as opposed to highly specialized language needs of a user. Next steps for this exploaratory 

work include refinement of the web-based data product to allow more robust sensemaking of user input. Concretely, 

enable a Google style "spell checker" that completes user inputs based on the first few letters input. Additionally, the 

model itself is a proof of concept. It provides a working example to gather other training sets and parametrically 

tune the model to find an optimal balance between accuracy and computational performance. 

 

ACKNOWLEDGEMENTS 

 

First, I would very much like to thank my wife, Cindy, for all her understanding and support during many weeks and 

long evenings of optimizing algorithms. She is amazing and for that, I am eternally grateful. Thanks also to Dr. 

Thomas Bock for his explanation of key mathematical concepts. Lastly, I would be remiss if I did not acknowledge 

the power of collaborative group dynamics. Many of the ideas and solutions found in this paper are rooted in the 

generous comments from my colleagues on the Data Specialization Discussion Forum. 

 

  

https://github.com/jgendron/datasciencecoursera
http://www.linkedin.com/in/jaygendron/
https://jgendron.shinyapps.io/predictngram/


 

 

 

MODSIM World 2015 

2015 Paper No. 13 Page 10 of 10 

REFERENCES 

 

Buchta, C., Hornik, K, Feinerer, I., & Meyer, D. (2014, June 11). tau: Text analysis utilities (Version 0.0-18) 

[Software]. Available from http://cran.r-project.org/web/packages/tau/index.html. 

 

Coursera. (2014). SwifKey Text Dataset [Data file]. Retrieved from 

https://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip. 

 

Feinerer, I. Hornik, K., & Artifex Software. (2014, June 11). tm: Text mining package (Version 0.6) [Software]. 

Available from http://cran.r-project.org/web/packages/tm/index.html. 

 

Feinerer, I., Hornik, K., & Meyer, D. (2008, March). Text mining infrastructure in R. Journal of Statistical 

Computing, 25(5). Retrieved from http://www.jstatsoft.org/v25/i05/paper. 

 

Gendron, G.R. (2014). Word prediction R markdown file [Data file]. Available from 

https://github.com/jgendron/datasciencecoursera. 

 

Jurafsky, D. & Martin, J.H. (2000). Speech and language processing: An introduction to natural language 

processing, computational linguistics and speech recognition. Englewood Cliffs, NJ: Prentice Hall. 

 

R Core Team (2014, July 10). R: A language and environment for statistical computing. R Foundation for Statistical 

Computing (Version 3.1.1) [Software]. Vienna, Austria. Available from http://www.R-project.org/. 

 

Richards, B. (1987). Type/token ratios: What do they really tell us? Journal of Child Language, 14, pp. 201209. 

Doi: 10:1017/S0305000900012885. Retrieved from 

http://hfroehlich.files.wordpress.com/2013/05/s0305000900012885a.pdf. 

 

Turing, A.M. (1950). Computing machinery and intelligence. Mind, 59, 433-460. Retrieved from 

http://www.loebner.net/Prizef/TuringArticle.html. 

http://cran.r-project.org/web/packages/tau/index.html
https://d396qusza40orc.cloudfront.net/dsscapstone/dataset/Coursera-SwiftKey.zip
http://cran.r-project.org/web/packages/tm/index.html
http://www.jstatsoft.org/v25/i05/paper
https://github.com/jgendron/datasciencecoursera
http://www.r-project.org/
http://hfroehlich.files.wordpress.com/2013/05/s0305000900012885a.pdf
http://www.loebner.net/Prizef/TuringArticle.html

