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ABSTRACT 

 

Training sonar operators for Anti-Submarine Warfare (ASW) in complex environments is challenging.  Performance 

deficiencies are the product of errors in both analysis and employment. Experts use mental models to interpret 

displays and reason about the underlying scenario in order to perform analysis under uncertain conditions and 

achieve more optimal tactical-system employment. To accelerate the development of this expertise and improve the 

retention of proficiency, ARiA is developing the Environment for Surface ASW Interactive Learning (E-SAIL
TM

). 

E-SAIL
TM

 enables operators to visualize the environmental and tactical scenario that resulted in the received sonar 

signals while allowing them to directly manipulate that scenario and observe the outcome of the manipulation. Here 

we discuss the theoretical basis for the E-SAIL
TM

 learning approach and overview development of the visualization 

environment and graphical user interface that deploys on tactical hardware and interfaces with tactical displays, 

tactical decision aids, embedded simulation-based training (SBT), and environmental databases through a high-

performance asynchronous messaging library and software-independent interface specification. 
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INTRODUCTION 

 

Among the greatest challenges of training Navy sonar operators to become proficient and ultimately attain expertise in the 

complex task  of sonar analysis and employment is, first, helping them understand and internalize the relationships between 

phenomena observed on the sonar tactical displays and the corresponding phenomena and environmental conditions in the 

physical world (viz., mental models of that transformation) and, second, helping them understand how this knowledge of the 

mapping between the two domains—encoded as mental models—can be utilized to improve tactical-sensor employment. The 

role of mental models in facilitating expert performance in analysis and employment of surface-ship tactical sonar systems 

for ASW is depicted graphically in Figure 1. 

 

 

 

ASW watch-standing performance deficiencies are the product both of errors in signal interpretation (analysis) and 

equipment-mode selection (employment). Errors in signal interpretation are well characterized by standard sonar- 

performance metrics and constitute a failure to correctly perceive, interpret or act on information. In contrast, errors in 

equipment-mode selection can actually prevent information from being conveyed. An incorrect display setting or failure to 

consider a particular display mode may result in latent information being overlooked or imperceptible, while a poor choice of 

operating mode may so restrict the information content of the signal that detection or classification is impossible (Gaumond, 

Soukup, Baer, & Summers, 2008). Figure 1 illustrates information available to operators: the tactical active-sonar display (in 

this example the “Common Active” display) and performance-prediction tactical decision aids (in this example the “SPPFS-

STDA” tactical decision aid). As illustrated, operators must first employ mental models to parse and interpret this uncertain 

information to develop an understanding of the tactical and environmental scenario. Operators can then employ mental 

models and mental simulations together with external tactical decision aids (TDAs) to optimize employment of the system. 

 

Current training products for individual and team sonar-technician (ST) training—both for classroom and on-board use—use 

actual or simulated tactical displays and software driven by recorded or simulated sonar data for operational training and also 

for employment training. This approach has the advantage of ensuring fidelity to the actual tactical experience, but has 

weaknesses as a pedagogical approach in that it inadequately supports trainees learning complex concepts—particularly those 

mental models and mental-simulation capabilities (Trickett & Trafton, 2007; Christensen & Schunn, 2008) experts use to 

interpret tactical displays and reason about the underlying tactical scenario in uncertain situations. To address this challenge, 

ARiA is developing E-SAIL
TM

, the Environment for Surface ASW Interactive Learning. E-SAIL
TM

 enables operators to 

visualize the environmental and tactical scenario that resulted in the received sonar signals while allowing them to directly 

manipulate that scenario and observe the outcome of the manipulation. 

 

Figure 1. Graphical Depiction of the Conceptual Basis for the Training Approach Developed in E-

SAIL. 
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THE NATURE OF EXPERTISE 

 

 

Characterization of ASW performance deficiencies as analysis and employment and the employment limitations 

predicted by the signal-processing model developed by Gaumond, Soukup, Baer, & Summers (2008) are borne out 

in the empirical studies of passive-sonar analysis and employment by expert submarine STs (STSs) conducted by 

Kirschenbaum & Gray (2000). In these studies the chief difference observed in the behavior of expert STSs relative 

to journeyman STSs was the time spent investigating noisy or otherwise uninformative data before taking steps to 

obtain better quality data. In this schema-directed problem solving, journeymen and experts follow the same steps, 

but the more extensive and robust cognitive frameworks of the experts (viz., schemata) provide better guidance 

regarding how to follow through the indeterminate number of steps that adaptively address shallow subgoals 

(Kirschenbaum & Gray, 2000). Thus, experts may have a better developed strategy (Chi, Glaser, & Farr, 1988) or 

better employ a common strategy. In the work of Kirschenbaum & Gray (2000), expert operators understood the 

source of limitations in the data and how to employ the tactical system in order to enhance the information present in 

that data. Both this rapid analysis and ability to make decisions to enhance received data through more optimal 

employment require the ability to translate between the display domain and the tactical and environmental scenario.  

 

Anti-Submarine Warfare: A Complex Task 

 

Tasks are complex when they involve reasoning about outcomes that are affected by multiple interacting factors or 

continuous variables through dynamic and nonlinear processes described by stochastic mappings that need not be 

one-to-one or onto [see, e.g., (Feltovich, Spiro, & Coulsen, 1993)]. Interpreting (i.e., for ASW analysis) and 

exploiting (i.e., for ASW tactical employment) the mapping between the real-world environmental and tactical 

scenario and the technology-mediated presentation on the sonar tactical display is exemplary of such a complex task. 

Other examples include interpretation of medical images (Lesgold et al., 1988; Feltovich, Spiro, & Coulsen, 1993; 

Meadows, Wulfeck, & Wetzel-Smith, 2009).  

 

Following the taxonomy of Meadows, Wulfeck, & Wetzel-Smith (2009), ASW analysis and employment is complex 

because the mapping between world and display domains is abstract: all of the relevant phenomena and many of the 

causes [e.g., sound-speed profiles (SSPs)] cannot be directly observed. It is also extremely multivariate with 

complex correlations between variables.  

 

The mapping is inherently nonlinear, in the sense that functional (viz., causal) relationships between input 

parameters—like wind speed, bottom loss, and SSP—and display outputs—like reverberation time/range envelope, 

clutter location and level, and target signal excess—cannot be described by simple linear functions. Moreover, the 

physics of underwater sound propagation and scattering is strongly conditional: the observable properties are highly 

dependent on the environment and the sonar-system settings (roughly speaking, boundary conditions and initial 

conditions). 

 

Sonar reveals to the operator phenomena that are both simultaneous and causal. Some observable parameters on the 

display change together reflecting an (unobserved) underlying phenomenon (e.g., an internal wave perturbs the SSP, 

altering multiple observable aspects of the active display at the same time) while other observable display 

parameters are (indirectly) caused by observable changes in other parameters (e.g., a surface ship moving in or out 

of a convergence zone). This has significant implications for learning causal models (Sloman, 2005). 

 

The ability of experts to reason about complex tasks such as sonar analysis and employment that involve dynamic, 

nonlinear, and uncertain mappings between high-dimensional spaces is predicated on multilayered schemata and 

causal mental models that enable mental simulation. In ASW analysis and employment, the internal models used by 

experts allow them to simulate the mapping from the domain of environmental and tactical scenarios to the range of 

tactical display configurations. ASW is a complex task in part because the mapping between domains need not be 

one-to-one or onto (i.e., injective, surjective and, thus, uniquely invertible). 

 

Schemata and Mental Models 

 

Experts achieve high levels of performance through use of cognitive representations of domain knowledge: 

schemata and mental models. Schemata are conceptual structures for representing, storing, organizing, and using 
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knowledge in a domain. They represent objects and their relationships to other objects, situations, events, and 

sequences of events. They contain information about categories of objects in general (e.g., submarines) and specific 

information about objects that are members of a category (e.g., Kilo class submarines). Schemata affect the way 

knowledge is received and interpreted. Through schemata experts represent the problems they encounter at a deeper, 

more principled level than novices (Chi, Glaser, & Farr, 1988; Lesgold et al., 1988), which enables more efficient 

use of short- and long-term memory. The same schemata that enable deep reasoning also enable experts to better 

recognize targets given noise or variations in how the targets present (e.g., multipath time-spread/smearing and 

aspect-dependent target strength). 

 

Mental models are essential tools by which humans interpret (i.e., segment and understand) reality (Zacks & 

Tversky, 2001; Zacks, 2004; Sloman, 2005). Like schemata they embed knowledge about object and actions, but 

they also implicitly encode causal structure by describing physical quantities such as position or speed in terms of 

ordinal or relative relationships (Trickett & Trafton, 2007; Christensen & Schunn, 2008). This enables mental “what 

if…?” simulation of outcomes—even where there is no prior experience of the exact input or output conditions. For 

this reason, mental simulations are run under situations of uncertainty to turn that uncertainty into approximate 

answers by generating possible mappings (Christensen & Schunn, 2008). 

 

To achieve expertise in analysis and employment, STs must develop facility in inferring from multiple observable 

properties the unseen cause of phenomena and predicting the results of changing one or more of those variables. 

Mental models and mental simulation enable STs interpreting and analyzing information presented by the tactical 

displays and their ability to more optimally employ the tactical system to obtain better or more-complete 

information (Kirschenbaum & Gray, 2000).  

 

Learning Schemata and Mental Models 

Schemata used by experts in complex tasks are deep, multilayered structures that better represent the problem space 

and can be more readily tuned to the specific attributes of the problem (Lesgold et al., 1988). Learning such deep 

and highly layered structures requires that learners be exposed to conflict situations that contradict existing schemata 

in order to “promote formation of higher-order structures” (Leith, 1968). This concept of cognitive change in 

response to anomalous data that challenges existing schemata has been more fully developed in the framework of 

inquiry learning (IL) (Collins & Stevens, 1982a, 1982b; Collins, 1985).  

 

Modern developments of IL [see, e.g., (Hmelo-Silver, Duncan, & Chinn, 2007)] focus on methods of structured and 

guided inquiry that provide appropriate scaffolding for the learning process (viz., management of working memory) 

as learners progress through the sequence of steps that culminates in development of new or deeper schemata. 

However, early development by Collins et al. (Collins & Stevens, 1982a, 1982b; Collins, 1985) conceived of IL 

dialogue meant to help learners understand causal relations. That is to say, Collins et al. thought of IL as a tool for 

acquiring mental models by deriving new theories in a particular domain from examples. Specifically, to help a 

learner acquire a complex model, Collins et al. argued that training should select scenarios that (1) exist at extremal 

points of the variables, (2) have parameters that span the non-injective/surjective parameter combinations, or (3) 

provide counterexamples to faulty models by highlighting factors that are insufficient, unnecessary, or irrelevant, in 

the domain of the mapping(s) for which the learner should acquire models. Similarly, training should propose 

hypothetical “what if...?” scenarios that provide similar counterexamples. Beyond this, training should provide 

opportunities for learners to formally articulate hypotheses (viz., mental models) and evaluate those hypotheses by 

making testable predictions.   

 

This relates to more recent theories of causal learning that contrast learning by observation with learning by 

intervention (Steyvers, Tenenbaum, Wagenmakers, & Blum, 2003, Lagnado & Sloman, 2004; Hagmayer, Sloman, 

Lagnado, & Waldmann, 2007). Intervention (i.e., observer-directed manipulation of the world such that outcomes 

can be directly observed and causal linkages inferred) has distinct advantages for learning causal relations enabling 

some causal structures not distinguishable by observation alone to be disentangled, focusing learner attention on 

specific parameters, and accelerating the learning process. 

 

However, learning by intervention is not without risk; learners probe only those causal relationships they are able to 

manipulate (Sloman, 2005). Thus, to be effective, a system must expose all of the relevant factors to manipulation. 

Moreover, for a complex task such as sonar analysis and employment, the manipulation itself must be appropriately 

scaffolded to ensure that learners understand which parameters they are manipulating and are exposed to relevant 
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parameters. For example, this necessitates provision of semantic labeling for multivariate parametric inputs such as 

SSP, which have a causal linkage to propagation paths in aggregate according to semantic categories that label 

certain classes/patterns of SSP data (e.g., surface duct). Those guidelines developed by Collins et al. for IL serve as 

a baseline for designing scaffolded processes of learning causal mental models by intervention. 

 

 

THE ENVIRONMENT FOR SURFACE ASW INTERACTIVE LEARNING (E-SAIL
TM

) 

 

 
Figure 2. A Perspective View of a Submarine Target from an E-SAIL

TM
 Screen Capture Showing Integrated 

Display of Eigenray Data for that Target. 

 

E-SAIL
TM

, as shown in the example screen capture in Figure 2, is a unique learning tool for interactive replay and 

control of data from simulated and reconstructed tape exercises and simulation-based ASW training that supports 

schoolhouse and onboard training and after-action reviews (AARs). It enhances the ASW knowledge and skill 

learning and retention of STs by enabling them to visualize the environmental and tactical scenario that resulted in 

the received sonar signals they observe on tactical displays while enabling them to directly manipulate that 

environmental and tactical scenario through an intuitive interface and observe the outcome of that manipulation on 

the tactical displays. This capability for contextualized “what if…?” analysis facilitates training methods, tools, and 

protocols (individual, team, and game-based) through which STs actively learn and internalize through a guided and 

scaffolded inquiry process (Hmelo-Silver, Duncan, & Chinn, 2007; Edelson, Gordin, & Pea, 1999) the mental 

models and mental-simulation capabilities (Trickett & Trafton 2007; Christensen & Schunn, 2008) experts use to 

interpret tactical displays and reason about the underlying tactical scenario in uncertain situations to achieve more 

optimal tactical-system employment.  

 

Though use of coupled, interactive simulation (whether TDA overlays or interactive control of SBT capabilities) and 

intuitive, scaffolded, three-dimensional visualizations of the ground-truth tactical situation and environmental data, 

E-SAIL
TM

 enables instructors to reveal complex environmental effects and decompose the environment and enables 

learners to explore and intervene in the environment. By coupling the tactical display with a 3D rendering of the 

ground truth from the scenario controller of an SBT or reconstructed tape data, E-SAIL
TM

 provides for users a 

graphical solution to the inverse problem of reconstructing the physical domain from the display domain. 

 

E-SAIL
TM

 provides an interface to external models and simulations (whether performance prediction from TDAs or 

explicit simulation by a SBT) that replicates the function of internal mental models and simulations. Such external 

models and simulations serve different purposes for learners and experts. Learners use simulations to gain 

understanding about the basic concepts that are embodied in models (i.e., to acquire internal mental representations 

of those models) while experts use external simulations in much the same way as internal simulations: to consider 

the implications of an already known model for new sets of parameters.  
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Models and Interfaces of E-SAIL 

 

As shown in Figure 3, E-SAIL
TM

 is a visualization environment and direct-manipulation graphical interface built 

within a commercial video-game engine that deploys on tactical hardware through the Unity3D platform-agnostic 

build environment and interfaces with tactical displays, TDAs, embedded SBTs, and environmental databases by 

sharing data through a platform-agnostic high-performance asynchronous messaging library (ZeroMQ) and a set of 

platform- and software-independent interface specification (Google Protocol Buffers).  

 

 
Figure 3. Overall structure of E-SAIL

TM
 for the surface ASW use case shown in Figure 1, emphasizing 

input/output, standalone software components, and interfaces between them.  

 

The network interfaces and data structures we have developed, built, and tested during this phase of E-SAIL
TM

 

prototype development enable: 

 

 users to view real-time motion of entities in the virtual environment based upon scenario data 

provided by the SBT scenario controller or by the metadata of reconstructed tape data, and 

 users to manipulate (e.g., translate and rotate) entities in the virtual environment or manipulate the 

environment (e.g., wind speed, SSP, bathymetry, bottom type) and have this data passed to the 

scenario controller such that the simulated sonar data generated by SBT dynamically reflect these 

changes.  

 

For users of E-SAIL
TM

 to learn and internalize mental models of the mapping between real-world environmental 

scenarios and the tactical display, E-SAIL
TM

 must accurately visualize those environmental data used in the 

generation of the sonar data (in the case the display is driven by an SBT) or present when the data were collected (as 

in the case of reconstructed tape data). This is accomplished in E-SAIL
TM

 by dynamically ingesting and rendering 

environmental data from archival databases, forecasts/nowcasts, and in-situ measurements including bathymetry, 

sediment type/bottom province, sea-surface wind speed (mapped to sea state/wave height), and (range-dependent) 

SSP. 

 

Likewise, to assist operators in forming an understanding of complex environmental and tactical scenarios and the 

mapping from those scenarios to display phenomena, the models that underlie the simulation of the physical world 

in the E-SAIL
TM

 virtual environment (e.g., the motion of fish schools or the shape of the surface wake) must provide 

appropriate fidelity (Summers, 2012a) relative to the physics that generated tape data (to the extent such physics is 

invertible) and be aligned with the models that drive the acoustic simulation when simulated data from an SBT is 

used as an input to E-SAIL
TM

 (Summers, 2012b). Thus, E-SAIL
TM

 includes physics-based models for the physical 

motion of the environment—such as wave height and motion—and clutter entities—such as surface-ship wakes, fish 

schools (Redmond, Meyer, & Summers 2014), and marine mammals. Motion of targets, ownship, and sensors (viz., 

towed-array motion and shape) are modeled by the internal algorithms of the scenario controller and those data 

provided to E-SAIL
TM

 through the asynchronous messaging interface. 

 

Finally, E-SAIL renders within the 3D visual environment and scaffolds (Summers, 2012a) the output of acoustical 

models and sonar performance-prediction models (viz., TDAs) because displays of physical quantities, such as 
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transmission loss (TL), and derived quantities, such as signal excess (SE), are intermediate structures in the causal 

models used by experts to reason about the mapping between the physical world and the tactical scenario (e.g., “that 

surface ship will not be visible on the tactical display because the TL to and/or from its location is too great given 

the propagation environment”). Similarly, models such as ray-tracing and eigenray plots that serve as graphical aids 

to interpreting acoustical phenomena are also rendered in the virtual environment. Figure 2 shows an example of 

eigenrays rendered for a submerged target. Figure 4 shows an example of a full-field TL plot along a bearing of 

interest.  

 

 
Figure 4. A Perspective View of a Full-Field Transmission-Loss from an E-SAIL

TM
 Screen Capture. 

 

Pedagogy of E-SAIL 

 

E-SAIL
TM

 supports the acquisition of mental models and schemata by providing an extrinsic  source of information 

(i.e., a dynamic 3D visualization) that clearly illustrates for STs what specific environmental and tactical scenario 

led to the specific configuration on the tactical displays. That is to say, E-SAIL makes explicit the mapping from the 

domain of environmental and tactical scenarios (i.e., what is happening in the real world) to the domain of tactical 

display configurations (i.e., what is seen on the display).  

 

While visualization coupled with interactive M&S has had a long and significant role in science and engineering 

education [see, e.g., (Edelson, Gordin, & Pea, 1999)], the efficacy of these learning tools depends strongly on their 

ability to scaffold the learning process and appropriately manage cognitive load for the trainees, who may lack 

perceptual expertise or key declarative knowledge necessary to learn schemata and mental models from the 

visualization. In E-SAIL
TM

 the presentation of and interface to visualizations and the underlying M&S is adapted to 

the proficiency of trainees (Summers, 2012a), ensuring effective learning experiences for all operators. Likewise, 

users are implicitly and explicitly scaffolded through use of embedded models to perform “what if…?” interventions 

used for causal learning and development of mental models. 

 

To convey information visually, E-SAIL
TM

 borrows from the work of Barton et al. the concept of “gisting” (Barton, 

Rowland, & Encarnação, 2000). Models and schemata developed by expert sonar operators over years of experience 

are encapsulated in “information icons” that describe the environment and enable novice and journeymen operators 

to navigate through “new information space” presented by the tactical displays.  Consistent with Schneiderman’s 

Visual Information Seeking Mantra, “overview first, focus and zoom, details on demand” (Schneiderman, 1996), 

these “information icons” describe the essential data (i.e., the gist). Now familiar as interface elements from uses 

such as weather icons on mobile-phone and tablet displays, information icons conceal low-priority information and 

thereby reduce the visual search space, providing an “experience multiplier.”  

 

Learners given control of the deployment of animation sequences obtain a better understanding as compared to those 

learners without flexible control of animation viewing (Harris, 2012). For this reason, E-SAIL
TM

 tempers use of 

explicit adaptivity of the display, preferring implicit adaptivity through affordances that enable adaptation to 

individual users or teams. Novice learners more frequently use bottom-up processing of animation elements (Harris, 

2012), which E-SAIL
TM

 supports through user-accessible scaffolding (information icons, textual and visual aids). 
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Acquisition of Mental Models by Intervention 

The central capability to the pedagogical approach of E-SAIL
TM

 is provision for “what if…?” interventions by 

instructors and learners, together with intrinsic and extrinsic scaffolding of the process through intuitive direct 

manipulation of the environment, semantic classification and labeling of manipulable parameters, semantic 

information embedded in visualizations (viz., lexical drill-down capabilities), and integrated modeling tools (e.g., 

ability to graphically relate echo delay to range in terms of multipath structure). Such “what if…?” interventions can 

be effected in E-SAIL
TM

 either through manipulation of the scenario controller of the SBT used to generate synthetic 

data or through selection of archived tape data with desired properties. 

 

Because all display outputs in the set of possible display outputs result from actual scenarios in the physical world, 

the mapping is always subjunctive, but it is not always injective. This is the reason E-SAIL
TM

 cannot allow an 

operator to directly modify the tactical display and observe (the set of) possible physical scenarios that might have 

caused it: in addition to multiple physical scenarios that might lead to the same tactical display (a non-injective 

mapping) there are some states of the tactical display that, while possible to imagine or draw, have no corresponding 

physical scenario that could produce them. This likely has little or no disadvantage for learning of mental models 

because temporal order (Sloman, 2005) is a strong clue to causal structure and environment precedes sonar response. 

 

Semantic Classification and Labeling 

Manipulation of the environmental scenario is performed in current SBTs through selection of the time and location 

of the scenario with limited capability for direct manipulation of environmental parameters. The same holds for 

archived tape data: a user must locate a tape that was recorded when the ship was in such a location at such a time 

that the desired environmental scenario parameters were present. In contrast, E-SAIL
TM

 allows for a more intuitive 

and semantically meaningful interface for manipulation of the environment through parameterization and scaffolded 

interfaces. 

 

The first key attribute that enables intuitive control of the environmental scenario is semantically meaningful, low-

dimensional parameterization of environmental data. Some environmental properties such as surface loss and 

surface backscattering strength can be parameterized by a single semantically meaningful parameter such as sea 

state (viz., significant wave height) or wind speed (assuming fully developed seas). In other cases, such as SSPs, the 

environmental data is inherently high-dimensional and not amenable to parametric manipulation in its native format. 

In such cases it is necessary to develop lower-dimensional parameterizations that are linked to physically and 

semantically meaningful attributes. 

 

For example, this parameterization is achieved for SSPs in E-SAIL
TM

 using machine classification of a linearized 

representation according to semantic categories. SSPs are decomposed into (semantic) components that results in 

particular phenomena and (numerical or ordinal) parameters of those components. In this interface paradigm, the 

underlying M&S (e.g., the SAST SBT) naturally constrains the range and type of possible actions, which provides 

some measure of implicit scaffolding (Podolefsky, Perkins, & Adams, 2010). 

 

Scaffolding the display via “information icons” (as described in the previous subjection) requires automated 

classification of extracted environmental data according to meaningful semantic categories. For example, an expert 

visualizing a field of sound-speed profiles (SSPs) extracted from GDEM-V as an orthographic projection can 

interpret the SSPs in terms of the resulting propagation behaviors that will be observed in the environment. Using 

internal models, an expert understands that certain aspects of the SSP will correspond with semantically meaningful 

propagation categories such as “surface duct,” “deep sound channel,” or “convergence zone” and can further 

identify attributes of those propagation channels such as “channel depth,” or “cycle distance.” In contrast, a novice 

does not yet have the underlying mental models needed to interpret SSPs in terms of tactically meaningful 

phenomenology. The same is true for a scaffolded “what if…?” interface to learning by intervention. The interface 

must present the user with semantic information that is sufficiently abstracted from the raw SSP data such that the 

desired mental model can be learned, which requires classification and labeling of the SSP. 

 

In the example case of SSPs, E-SAIL
TM

 performs automated machine classification and semantic labeling of 

environmental data extracted from GDEM-V and stores this information for the entire GDEM-V database in an 

ontological OWL database that supports semantic query, i.e., searching for SSP by meaningful attributes such as 

“has a surface duct.” We have automated classification of SSPs using a simplified linear parametrization of the SSPs 
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coupled with a rule-based classifier for the overlapping categories (i.e., an SSP can belong to one or more classes 

with restrictions on membership expressed in terms of first-order logic). Additional numeric parameters are 

extracted for SSPs belonging to certain classes (e.g., depth of the surface duct or cycle distance). The semantic class-

membership properties and numeric parameters of all GDEM-V SSPs are stored in an ontological database. Using 

this semantically indexed database, SSPs can be searched using natural language terms and intuitive 

logical/semantic relations. For example, it is possible to request a SSP with a deep-sound channel and a surface duct 

that has sufficient depth excess to support a CZ.  

 

This system, termed SSPro
TM

, is critical to the ability of E-SAIL
TM

 to help learners acquire mental models through 

intervention because it collapses multivariate input parameters into lower-dimensional semantic labels. This 

achieves scaffolding by directing the inquiry process and guiding inquiry toward meaningful sets of input 

parameters. SSPro
TM

 has also enabled us to demonstrate a number of other unique capabilities within E-SAIL. For 

example, using the interface shown in Figure 4, a user may design an SSP graphically as a means to search the 

GDEM-V database for an SSP having the desired attributes. Using a real-time GUI a user can “draw” an SSP that 

has certain attributes (e.g., a surface duct, or a deep sound channel with a particular channel-axis depth). The 

automatic classifier then classifies the “drawn” SSP and uses the search terms to semantically query SSPro
TM

 and 

return a matching set of SSP profiles with the desired attributes. 

 

Semantically meaningful intuitive search tools such as this have not previously been used for Navy environmental 

databases and enable trainers and learners using E-SAIL
TM

 to make optimal use of both archived tape data and SBT 

generation of synthetic data.    

 

 
Figure 4. A View Of The Graphical SSP Query Interface Showing How A User Can “Draw” An SSP Using 

Control Points Or Select A Season/Time Of Day (Viz., Day/Night) As A Means Of Specifying A Desired SSP 

Type From Which To Choose Tape Data Or Generate A SAST AIC Scenario. 

 

User-Driven Intervention as Extrinsic Feedback 

E-SAIL
TM

 is a source of extrinsic information (i.e., feedback) otherwise unavailable to STs during the normal 

performance of ASW tasks:  it is precisely those unknown elements of the tactical scenario displayed by E-SAIL
TM

 

(viz., the location of submarines or information about what environmental element corresponds to a particular 

feature on the tactical display) that STs are seeking to determine during the normal performance of ASW tasks. 

 

The content and valence of E-SAIL
TM

 feedback are modulated by scenario and user actions. The modality is 

primarily graphical, but augmented by semantically meaningful text labels, icons, and opportunities for drill-down 

interrogation. This means that the amount of feedback, in terms of level of detail, naturally adapts to user needs 

through the multilevel interface. Timing of feedback remains the critical variable for consideration. Fortunately, the 

role of feedback timing in SBT has been investigated in a number of recent studies [see, e.g., (Atwood, 2009) for a 

review of recent work].  In general, immediate feedback, provided during task performance, enhances acquisition of 

proficiency but harms retention, while delayed feedback, provided after an exercise (e.g., an after-action review), 
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enhances retention but slows the process of acquisition.  This suggests that training methods should confine 

feedback to after-action reviews (AARs)—as it would be in an operational environment—to ensure transfer to 

authentic ASW tasks. Moreover delayed feedback allows for the development of self-regulatory processes [Atwood 

(2009)]. 

 

However, we envison E-SAIL
TM

 as an opportunity to leverage multiple forms of feedback toward achieving the dual 

goal of accelerating training and improving retention. By adapting the timing of feedback to the proficiency of 

learners, feedback can be optimized to speed acquisition of skill when (team) proficiency is low (acquisition phase) 

then adjusted to optimize retention once a desired level of proficiency is achieved (retention phase). 

 

 

SUMMARY AND FUTURE WORK 

 

We have described the conceptual basis and basic functionality and structure of E-SAIL, a unique learning tool that 

integrates game-based visualization of the tactical and environmental situation with real-time modeling and 

simulation of sonar performance to enable interactive “what if…?” analyses that support acquisition of the causal 

mental models of underwater acoustics and sonar performance that experts use to achieve (near) optimal 

performance in analysis and employment of tactical sonar systems. While our development of the E-SAIL
TM

 

prototype has been grounded in the current cognitive science of learning and training, the next stages of our work 

will involve laboratory and field studies using the E-SAIL
TM

 system to investigate the validity of the prior findings 

and theories for the domain of ASW analysis and employment. Because E-SAIL
TM

 is modular, integrating multiple 

systems together with the display environment via asynchronous message passing and platform-agnostic message 

formats, it is well suited for such experimentation in which user models, assessment tools, and adaptation algorithms 

can be quickly altered, replaced, or removed. 
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